Metamath Proof Explorer


Theorem txbasex

Description: The basis for the product topology is a set. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypothesis txval.1 B = ran x R , y S x × y
Assertion txbasex R V S W B V

Proof

Step Hyp Ref Expression
1 txval.1 B = ran x R , y S x × y
2 eqid R = R
3 eqid S = S
4 1 2 3 txuni2 R × S = B
5 uniexg R V R V
6 uniexg S W S V
7 xpexg R V S V R × S V
8 5 6 7 syl2an R V S W R × S V
9 4 8 eqeltrrid R V S W B V
10 uniexb B V B V
11 9 10 sylibr R V S W B V