Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|
2 |
1
|
txval |
|
3 |
|
bastg |
|
4 |
|
bastg |
|
5 |
|
resmpo |
|
6 |
3 4 5
|
syl2an |
|
7 |
|
resss |
|
8 |
6 7
|
eqsstrrdi |
|
9 |
|
rnss |
|
10 |
8 9
|
syl |
|
11 |
|
eltg3 |
|
12 |
|
eltg3 |
|
13 |
11 12
|
bi2anan9 |
|
14 |
|
exdistrv |
|
15 |
|
an4 |
|
16 |
|
uniiun |
|
17 |
|
uniiun |
|
18 |
16 17
|
xpeq12i |
|
19 |
|
xpiundir |
|
20 |
|
xpiundi |
|
21 |
20
|
a1i |
|
22 |
21
|
iuneq2i |
|
23 |
18 19 22
|
3eqtri |
|
24 |
|
ovex |
|
25 |
|
ssel2 |
|
26 |
|
ssel2 |
|
27 |
25 26
|
anim12i |
|
28 |
27
|
an4s |
|
29 |
|
txopn |
|
30 |
28 29
|
sylan2 |
|
31 |
30
|
anassrs |
|
32 |
31
|
anassrs |
|
33 |
32
|
ralrimiva |
|
34 |
|
tgiun |
|
35 |
24 33 34
|
sylancr |
|
36 |
1
|
txbasex |
|
37 |
|
tgidm |
|
38 |
36 37
|
syl |
|
39 |
2
|
fveq2d |
|
40 |
38 39 2
|
3eqtr4d |
|
41 |
40
|
adantr |
|
42 |
41
|
adantr |
|
43 |
35 42
|
eleqtrd |
|
44 |
43
|
ralrimiva |
|
45 |
|
tgiun |
|
46 |
24 44 45
|
sylancr |
|
47 |
46 41
|
eleqtrd |
|
48 |
23 47
|
eqeltrid |
|
49 |
|
xpeq12 |
|
50 |
49
|
eleq1d |
|
51 |
48 50
|
syl5ibrcom |
|
52 |
51
|
expimpd |
|
53 |
15 52
|
syl5bi |
|
54 |
53
|
exlimdvv |
|
55 |
14 54
|
syl5bir |
|
56 |
13 55
|
sylbid |
|
57 |
56
|
ralrimivv |
|
58 |
|
eqid |
|
59 |
58
|
fmpo |
|
60 |
57 59
|
sylib |
|
61 |
60
|
frnd |
|
62 |
61 2
|
sseqtrd |
|
63 |
|
2basgen |
|
64 |
10 62 63
|
syl2anc |
|
65 |
|
fvex |
|
66 |
|
fvex |
|
67 |
|
eqid |
|
68 |
67
|
txval |
|
69 |
65 66 68
|
mp2an |
|
70 |
64 69
|
eqtr4di |
|
71 |
2 70
|
eqtr2d |
|