Step |
Hyp |
Ref |
Expression |
1 |
|
topontop |
|
2 |
1
|
ad2antrr |
|
3 |
|
simprl |
|
4 |
|
toponuni |
|
5 |
4
|
ad2antrr |
|
6 |
3 5
|
sseqtrd |
|
7 |
|
eqid |
|
8 |
7
|
clscld |
|
9 |
2 6 8
|
syl2anc |
|
10 |
|
topontop |
|
11 |
10
|
ad2antlr |
|
12 |
|
simprr |
|
13 |
|
toponuni |
|
14 |
13
|
ad2antlr |
|
15 |
12 14
|
sseqtrd |
|
16 |
|
eqid |
|
17 |
16
|
clscld |
|
18 |
11 15 17
|
syl2anc |
|
19 |
|
txcld |
|
20 |
9 18 19
|
syl2anc |
|
21 |
7
|
sscls |
|
22 |
2 6 21
|
syl2anc |
|
23 |
16
|
sscls |
|
24 |
11 15 23
|
syl2anc |
|
25 |
|
xpss12 |
|
26 |
22 24 25
|
syl2anc |
|
27 |
|
eqid |
|
28 |
27
|
clsss2 |
|
29 |
20 26 28
|
syl2anc |
|
30 |
|
relxp |
|
31 |
30
|
a1i |
|
32 |
|
opelxp |
|
33 |
|
eltx |
|
34 |
33
|
ad2antrr |
|
35 |
|
eleq1 |
|
36 |
35
|
anbi1d |
|
37 |
36
|
2rexbidv |
|
38 |
37
|
rspccva |
|
39 |
2
|
ad2antrr |
|
40 |
6
|
ad2antrr |
|
41 |
|
simplrl |
|
42 |
|
simprll |
|
43 |
|
simprrl |
|
44 |
|
opelxp |
|
45 |
43 44
|
sylib |
|
46 |
45
|
simpld |
|
47 |
7
|
clsndisj |
|
48 |
39 40 41 42 46 47
|
syl32anc |
|
49 |
|
n0 |
|
50 |
48 49
|
sylib |
|
51 |
11
|
ad2antrr |
|
52 |
15
|
ad2antrr |
|
53 |
|
simplrr |
|
54 |
|
simprlr |
|
55 |
45
|
simprd |
|
56 |
16
|
clsndisj |
|
57 |
51 52 53 54 55 56
|
syl32anc |
|
58 |
|
n0 |
|
59 |
57 58
|
sylib |
|
60 |
|
exdistrv |
|
61 |
|
opelxpi |
|
62 |
|
inxp |
|
63 |
61 62
|
eleqtrrdi |
|
64 |
63
|
elin1d |
|
65 |
|
simprrr |
|
66 |
65
|
sselda |
|
67 |
64 66
|
sylan2 |
|
68 |
63
|
elin2d |
|
69 |
68
|
adantl |
|
70 |
|
inelcm |
|
71 |
67 69 70
|
syl2anc |
|
72 |
71
|
ex |
|
73 |
72
|
exlimdvv |
|
74 |
60 73
|
syl5bir |
|
75 |
50 59 74
|
mp2and |
|
76 |
75
|
expr |
|
77 |
76
|
rexlimdvva |
|
78 |
38 77
|
syl5 |
|
79 |
78
|
expd |
|
80 |
34 79
|
sylbid |
|
81 |
80
|
ralrimiv |
|
82 |
|
txtopon |
|
83 |
82
|
ad2antrr |
|
84 |
|
topontop |
|
85 |
83 84
|
syl |
|
86 |
|
xpss12 |
|
87 |
86
|
ad2antlr |
|
88 |
|
toponuni |
|
89 |
83 88
|
syl |
|
90 |
87 89
|
sseqtrd |
|
91 |
7
|
clsss3 |
|
92 |
2 6 91
|
syl2anc |
|
93 |
92 5
|
sseqtrrd |
|
94 |
93
|
sselda |
|
95 |
94
|
adantrr |
|
96 |
16
|
clsss3 |
|
97 |
11 15 96
|
syl2anc |
|
98 |
97 14
|
sseqtrrd |
|
99 |
98
|
sselda |
|
100 |
99
|
adantrl |
|
101 |
95 100
|
opelxpd |
|
102 |
101 89
|
eleqtrd |
|
103 |
27
|
elcls |
|
104 |
85 90 102 103
|
syl3anc |
|
105 |
81 104
|
mpbird |
|
106 |
105
|
ex |
|
107 |
32 106
|
syl5bi |
|
108 |
31 107
|
relssdv |
|
109 |
29 108
|
eqssd |
|