Step |
Hyp |
Ref |
Expression |
1 |
|
txcmp.x |
|
2 |
|
txcmp.y |
|
3 |
|
txcmp.r |
|
4 |
|
txcmp.s |
|
5 |
|
txcmp.w |
|
6 |
|
txcmp.u |
|
7 |
|
txcmp.a |
|
8 |
|
id |
|
9 |
|
opelxpi |
|
10 |
8 7 9
|
syl2anr |
|
11 |
6
|
adantr |
|
12 |
10 11
|
eleqtrd |
|
13 |
|
eluni2 |
|
14 |
12 13
|
sylib |
|
15 |
5
|
adantr |
|
16 |
15
|
sselda |
|
17 |
|
eltx |
|
18 |
3 4 17
|
syl2anc |
|
19 |
18
|
adantr |
|
20 |
19
|
biimpa |
|
21 |
16 20
|
syldan |
|
22 |
|
eleq1 |
|
23 |
22
|
anbi1d |
|
24 |
23
|
2rexbidv |
|
25 |
24
|
rspccv |
|
26 |
21 25
|
syl |
|
27 |
|
opelxp1 |
|
28 |
27
|
ad2antrl |
|
29 |
|
opelxp2 |
|
30 |
29
|
ad2antrl |
|
31 |
30
|
snssd |
|
32 |
|
xpss2 |
|
33 |
31 32
|
syl |
|
34 |
|
simprr |
|
35 |
33 34
|
sstrd |
|
36 |
28 35
|
jca |
|
37 |
36
|
ex |
|
38 |
37
|
rexlimdvw |
|
39 |
38
|
reximdv |
|
40 |
26 39
|
syld |
|
41 |
40
|
reximdva |
|
42 |
14 41
|
mpd |
|
43 |
|
rexcom |
|
44 |
|
r19.42v |
|
45 |
44
|
rexbii |
|
46 |
43 45
|
bitri |
|
47 |
42 46
|
sylib |
|
48 |
47
|
ralrimiva |
|
49 |
|
sseq2 |
|
50 |
1 49
|
cmpcovf |
|
51 |
3 48 50
|
syl2anc |
|
52 |
3
|
ad2antrr |
|
53 |
|
cmptop |
|
54 |
4 53
|
syl |
|
55 |
54
|
ad2antrr |
|
56 |
|
cmptop |
|
57 |
52 56
|
syl |
|
58 |
|
txtop |
|
59 |
57 55 58
|
syl2anc |
|
60 |
|
simprrl |
|
61 |
60
|
frnd |
|
62 |
5
|
ad2antrr |
|
63 |
61 62
|
sstrd |
|
64 |
|
uniopn |
|
65 |
59 63 64
|
syl2anc |
|
66 |
|
simprrr |
|
67 |
|
ss2iun |
|
68 |
66 67
|
syl |
|
69 |
|
simprl |
|
70 |
|
uniiun |
|
71 |
69 70
|
eqtrdi |
|
72 |
71
|
xpeq1d |
|
73 |
|
xpiundir |
|
74 |
72 73
|
eqtr2di |
|
75 |
60
|
ffnd |
|
76 |
|
fniunfv |
|
77 |
75 76
|
syl |
|
78 |
68 74 77
|
3sstr3d |
|
79 |
7
|
ad2antrr |
|
80 |
1 2 52 55 65 78 79
|
txtube |
|
81 |
|
vex |
|
82 |
81
|
rnex |
|
83 |
82
|
elpw |
|
84 |
61 83
|
sylibr |
|
85 |
|
simplr |
|
86 |
85
|
elin2d |
|
87 |
|
dffn4 |
|
88 |
75 87
|
sylib |
|
89 |
|
fofi |
|
90 |
86 88 89
|
syl2anc |
|
91 |
84 90
|
elind |
|
92 |
|
unieq |
|
93 |
92
|
sseq2d |
|
94 |
93
|
rspcev |
|
95 |
94
|
ex |
|
96 |
91 95
|
syl |
|
97 |
96
|
anim2d |
|
98 |
97
|
reximdv |
|
99 |
80 98
|
mpd |
|
100 |
99
|
expr |
|
101 |
100
|
exlimdv |
|
102 |
101
|
expimpd |
|
103 |
102
|
rexlimdva |
|
104 |
51 103
|
mpd |
|