Step |
Hyp |
Ref |
Expression |
1 |
|
txcmp.x |
|
2 |
|
txcmp.y |
|
3 |
|
txcmp.r |
|
4 |
|
txcmp.s |
|
5 |
|
txcmp.w |
|
6 |
|
txcmp.u |
|
7 |
3
|
adantr |
|
8 |
4
|
adantr |
|
9 |
5
|
adantr |
|
10 |
6
|
adantr |
|
11 |
|
simpr |
|
12 |
1 2 7 8 9 10 11
|
txcmplem1 |
|
13 |
12
|
ralrimiva |
|
14 |
|
unieq |
|
15 |
14
|
sseq2d |
|
16 |
2 15
|
cmpcovf |
|
17 |
4 13 16
|
syl2anc |
|
18 |
|
simprrl |
|
19 |
|
ffn |
|
20 |
|
fniunfv |
|
21 |
18 19 20
|
3syl |
|
22 |
18
|
frnd |
|
23 |
|
inss1 |
|
24 |
22 23
|
sstrdi |
|
25 |
|
sspwuni |
|
26 |
24 25
|
sylib |
|
27 |
21 26
|
eqsstrd |
|
28 |
|
vex |
|
29 |
|
fvex |
|
30 |
28 29
|
iunex |
|
31 |
30
|
elpw |
|
32 |
27 31
|
sylibr |
|
33 |
|
inss2 |
|
34 |
|
simplr |
|
35 |
33 34
|
sselid |
|
36 |
|
inss2 |
|
37 |
|
fss |
|
38 |
18 36 37
|
sylancl |
|
39 |
|
ffvelrn |
|
40 |
39
|
ralrimiva |
|
41 |
38 40
|
syl |
|
42 |
|
iunfi |
|
43 |
35 41 42
|
syl2anc |
|
44 |
32 43
|
elind |
|
45 |
|
simprl |
|
46 |
|
uniiun |
|
47 |
45 46
|
eqtrdi |
|
48 |
47
|
xpeq2d |
|
49 |
|
xpiundi |
|
50 |
48 49
|
eqtrdi |
|
51 |
|
simprrr |
|
52 |
|
xpeq2 |
|
53 |
|
fveq2 |
|
54 |
53
|
unieqd |
|
55 |
52 54
|
sseq12d |
|
56 |
55
|
cbvralvw |
|
57 |
51 56
|
sylib |
|
58 |
|
ss2iun |
|
59 |
57 58
|
syl |
|
60 |
50 59
|
eqsstrd |
|
61 |
18
|
ffvelrnda |
|
62 |
23 61
|
sselid |
|
63 |
|
elpwi |
|
64 |
|
uniss |
|
65 |
62 63 64
|
3syl |
|
66 |
6
|
ad3antrrr |
|
67 |
65 66
|
sseqtrrd |
|
68 |
67
|
ralrimiva |
|
69 |
|
iunss |
|
70 |
68 69
|
sylibr |
|
71 |
60 70
|
eqssd |
|
72 |
|
iuncom4 |
|
73 |
71 72
|
eqtrdi |
|
74 |
|
unieq |
|
75 |
74
|
rspceeqv |
|
76 |
44 73 75
|
syl2anc |
|
77 |
76
|
expr |
|
78 |
77
|
exlimdv |
|
79 |
78
|
expimpd |
|
80 |
79
|
rexlimdva |
|
81 |
17 80
|
mpd |
|