| Step |
Hyp |
Ref |
Expression |
| 1 |
|
txcnp.4 |
|
| 2 |
|
txcnp.5 |
|
| 3 |
|
txcnp.6 |
|
| 4 |
|
txcnp.7 |
|
| 5 |
|
txcnp.8 |
|
| 6 |
|
txcnp.9 |
|
| 7 |
|
cnpf2 |
|
| 8 |
1 2 5 7
|
syl3anc |
|
| 9 |
8
|
fvmptelcdm |
|
| 10 |
|
cnpf2 |
|
| 11 |
1 3 6 10
|
syl3anc |
|
| 12 |
11
|
fvmptelcdm |
|
| 13 |
9 12
|
opelxpd |
|
| 14 |
13
|
fmpttd |
|
| 15 |
|
simpr |
|
| 16 |
|
opex |
|
| 17 |
|
eqid |
|
| 18 |
17
|
fvmpt2 |
|
| 19 |
15 16 18
|
sylancl |
|
| 20 |
|
eqid |
|
| 21 |
20
|
fvmpt2 |
|
| 22 |
15 9 21
|
syl2anc |
|
| 23 |
|
eqid |
|
| 24 |
23
|
fvmpt2 |
|
| 25 |
15 12 24
|
syl2anc |
|
| 26 |
22 25
|
opeq12d |
|
| 27 |
19 26
|
eqtr4d |
|
| 28 |
27
|
ralrimiva |
|
| 29 |
|
nffvmpt1 |
|
| 30 |
|
nffvmpt1 |
|
| 31 |
|
nffvmpt1 |
|
| 32 |
30 31
|
nfop |
|
| 33 |
29 32
|
nfeq |
|
| 34 |
|
fveq2 |
|
| 35 |
|
fveq2 |
|
| 36 |
|
fveq2 |
|
| 37 |
35 36
|
opeq12d |
|
| 38 |
34 37
|
eqeq12d |
|
| 39 |
33 38
|
rspc |
|
| 40 |
4 28 39
|
sylc |
|
| 41 |
40
|
eleq1d |
|
| 42 |
41
|
adantr |
|
| 43 |
5
|
ad2antrr |
|
| 44 |
|
simplrl |
|
| 45 |
|
simprl |
|
| 46 |
|
cnpimaex |
|
| 47 |
43 44 45 46
|
syl3anc |
|
| 48 |
6
|
ad2antrr |
|
| 49 |
|
simplrr |
|
| 50 |
|
simprr |
|
| 51 |
|
cnpimaex |
|
| 52 |
48 49 50 51
|
syl3anc |
|
| 53 |
47 52
|
jca |
|
| 54 |
53
|
ex |
|
| 55 |
|
opelxp |
|
| 56 |
|
reeanv |
|
| 57 |
54 55 56
|
3imtr4g |
|
| 58 |
42 57
|
sylbid |
|
| 59 |
|
an4 |
|
| 60 |
|
elin |
|
| 61 |
60
|
biimpri |
|
| 62 |
61
|
a1i |
|
| 63 |
|
simpl |
|
| 64 |
|
toponss |
|
| 65 |
1 63 64
|
syl2an |
|
| 66 |
|
ssinss1 |
|
| 67 |
66
|
adantl |
|
| 68 |
67
|
sselda |
|
| 69 |
28
|
ad2antrr |
|
| 70 |
|
nffvmpt1 |
|
| 71 |
|
nffvmpt1 |
|
| 72 |
|
nffvmpt1 |
|
| 73 |
71 72
|
nfop |
|
| 74 |
70 73
|
nfeq |
|
| 75 |
|
fveq2 |
|
| 76 |
|
fveq2 |
|
| 77 |
|
fveq2 |
|
| 78 |
76 77
|
opeq12d |
|
| 79 |
75 78
|
eqeq12d |
|
| 80 |
74 79
|
rspc |
|
| 81 |
68 69 80
|
sylc |
|
| 82 |
|
simpr |
|
| 83 |
82
|
elin1d |
|
| 84 |
8
|
ad2antrr |
|
| 85 |
84
|
ffund |
|
| 86 |
67
|
adantr |
|
| 87 |
84
|
fdmd |
|
| 88 |
86 87
|
sseqtrrd |
|
| 89 |
88 82
|
sseldd |
|
| 90 |
|
funfvima |
|
| 91 |
85 89 90
|
syl2anc |
|
| 92 |
83 91
|
mpd |
|
| 93 |
82
|
elin2d |
|
| 94 |
11
|
ad2antrr |
|
| 95 |
94
|
ffund |
|
| 96 |
94
|
fdmd |
|
| 97 |
86 96
|
sseqtrrd |
|
| 98 |
97 82
|
sseldd |
|
| 99 |
|
funfvima |
|
| 100 |
95 98 99
|
syl2anc |
|
| 101 |
93 100
|
mpd |
|
| 102 |
92 101
|
opelxpd |
|
| 103 |
81 102
|
eqeltrd |
|
| 104 |
103
|
ralrimiva |
|
| 105 |
14
|
ffund |
|
| 106 |
105
|
adantr |
|
| 107 |
14
|
fdmd |
|
| 108 |
107
|
adantr |
|
| 109 |
67 108
|
sseqtrrd |
|
| 110 |
|
funimass4 |
|
| 111 |
106 109 110
|
syl2anc |
|
| 112 |
104 111
|
mpbird |
|
| 113 |
65 112
|
syldan |
|
| 114 |
113
|
adantlr |
|
| 115 |
|
xpss12 |
|
| 116 |
|
sstr2 |
|
| 117 |
114 115 116
|
syl2im |
|
| 118 |
62 117
|
anim12d |
|
| 119 |
59 118
|
biimtrid |
|
| 120 |
|
topontop |
|
| 121 |
1 120
|
syl |
|
| 122 |
|
inopn |
|
| 123 |
122
|
3expb |
|
| 124 |
121 123
|
sylan |
|
| 125 |
124
|
adantlr |
|
| 126 |
119 125
|
jctild |
|
| 127 |
126
|
expimpd |
|
| 128 |
|
eleq2 |
|
| 129 |
|
imaeq2 |
|
| 130 |
129
|
sseq1d |
|
| 131 |
128 130
|
anbi12d |
|
| 132 |
131
|
rspcev |
|
| 133 |
127 132
|
syl6 |
|
| 134 |
133
|
expd |
|
| 135 |
134
|
rexlimdvv |
|
| 136 |
58 135
|
syld |
|
| 137 |
136
|
ralrimivva |
|
| 138 |
|
vex |
|
| 139 |
|
vex |
|
| 140 |
138 139
|
xpex |
|
| 141 |
140
|
rgen2w |
|
| 142 |
|
eqid |
|
| 143 |
|
eleq2 |
|
| 144 |
|
sseq2 |
|
| 145 |
144
|
anbi2d |
|
| 146 |
145
|
rexbidv |
|
| 147 |
143 146
|
imbi12d |
|
| 148 |
142 147
|
ralrnmpo |
|
| 149 |
141 148
|
ax-mp |
|
| 150 |
137 149
|
sylibr |
|
| 151 |
|
topontop |
|
| 152 |
2 151
|
syl |
|
| 153 |
|
topontop |
|
| 154 |
3 153
|
syl |
|
| 155 |
|
eqid |
|
| 156 |
155
|
txval |
|
| 157 |
152 154 156
|
syl2anc |
|
| 158 |
|
txtopon |
|
| 159 |
2 3 158
|
syl2anc |
|
| 160 |
1 157 159 4
|
tgcnp |
|
| 161 |
14 150 160
|
mpbir2and |
|