Metamath Proof Explorer


Theorem txcnp

Description: If two functions are continuous at D , then the ordered pair of them is continuous at D into the product topology. (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypotheses txcnp.4 φ J TopOn X
txcnp.5 φ K TopOn Y
txcnp.6 φ L TopOn Z
txcnp.7 φ D X
txcnp.8 φ x X A J CnP K D
txcnp.9 φ x X B J CnP L D
Assertion txcnp φ x X A B J CnP K × t L D

Proof

Step Hyp Ref Expression
1 txcnp.4 φ J TopOn X
2 txcnp.5 φ K TopOn Y
3 txcnp.6 φ L TopOn Z
4 txcnp.7 φ D X
5 txcnp.8 φ x X A J CnP K D
6 txcnp.9 φ x X B J CnP L D
7 cnpf2 J TopOn X K TopOn Y x X A J CnP K D x X A : X Y
8 1 2 5 7 syl3anc φ x X A : X Y
9 8 fvmptelrn φ x X A Y
10 cnpf2 J TopOn X L TopOn Z x X B J CnP L D x X B : X Z
11 1 3 6 10 syl3anc φ x X B : X Z
12 11 fvmptelrn φ x X B Z
13 9 12 opelxpd φ x X A B Y × Z
14 13 fmpttd φ x X A B : X Y × Z
15 simpr φ x X x X
16 opex A B V
17 eqid x X A B = x X A B
18 17 fvmpt2 x X A B V x X A B x = A B
19 15 16 18 sylancl φ x X x X A B x = A B
20 eqid x X A = x X A
21 20 fvmpt2 x X A Y x X A x = A
22 15 9 21 syl2anc φ x X x X A x = A
23 eqid x X B = x X B
24 23 fvmpt2 x X B Z x X B x = B
25 15 12 24 syl2anc φ x X x X B x = B
26 22 25 opeq12d φ x X x X A x x X B x = A B
27 19 26 eqtr4d φ x X x X A B x = x X A x x X B x
28 27 ralrimiva φ x X x X A B x = x X A x x X B x
29 nffvmpt1 _ x x X A B D
30 nffvmpt1 _ x x X A D
31 nffvmpt1 _ x x X B D
32 30 31 nfop _ x x X A D x X B D
33 29 32 nfeq x x X A B D = x X A D x X B D
34 fveq2 x = D x X A B x = x X A B D
35 fveq2 x = D x X A x = x X A D
36 fveq2 x = D x X B x = x X B D
37 35 36 opeq12d x = D x X A x x X B x = x X A D x X B D
38 34 37 eqeq12d x = D x X A B x = x X A x x X B x x X A B D = x X A D x X B D
39 33 38 rspc D X x X x X A B x = x X A x x X B x x X A B D = x X A D x X B D
40 4 28 39 sylc φ x X A B D = x X A D x X B D
41 40 eleq1d φ x X A B D v × w x X A D x X B D v × w
42 41 adantr φ v K w L x X A B D v × w x X A D x X B D v × w
43 5 ad2antrr φ v K w L x X A D v x X B D w x X A J CnP K D
44 simplrl φ v K w L x X A D v x X B D w v K
45 simprl φ v K w L x X A D v x X B D w x X A D v
46 cnpimaex x X A J CnP K D v K x X A D v r J D r x X A r v
47 43 44 45 46 syl3anc φ v K w L x X A D v x X B D w r J D r x X A r v
48 6 ad2antrr φ v K w L x X A D v x X B D w x X B J CnP L D
49 simplrr φ v K w L x X A D v x X B D w w L
50 simprr φ v K w L x X A D v x X B D w x X B D w
51 cnpimaex x X B J CnP L D w L x X B D w s J D s x X B s w
52 48 49 50 51 syl3anc φ v K w L x X A D v x X B D w s J D s x X B s w
53 47 52 jca φ v K w L x X A D v x X B D w r J D r x X A r v s J D s x X B s w
54 53 ex φ v K w L x X A D v x X B D w r J D r x X A r v s J D s x X B s w
55 opelxp x X A D x X B D v × w x X A D v x X B D w
56 reeanv r J s J D r x X A r v D s x X B s w r J D r x X A r v s J D s x X B s w
57 54 55 56 3imtr4g φ v K w L x X A D x X B D v × w r J s J D r x X A r v D s x X B s w
58 42 57 sylbid φ v K w L x X A B D v × w r J s J D r x X A r v D s x X B s w
59 an4 D r x X A r v D s x X B s w D r D s x X A r v x X B s w
60 elin D r s D r D s
61 60 biimpri D r D s D r s
62 61 a1i φ v K w L r J s J D r D s D r s
63 simpl r J s J r J
64 toponss J TopOn X r J r X
65 1 63 64 syl2an φ r J s J r X
66 ssinss1 r X r s X
67 66 adantl φ r X r s X
68 67 sselda φ r X t r s t X
69 28 ad2antrr φ r X t r s x X x X A B x = x X A x x X B x
70 nffvmpt1 _ x x X A B t
71 nffvmpt1 _ x x X A t
72 nffvmpt1 _ x x X B t
73 71 72 nfop _ x x X A t x X B t
74 70 73 nfeq x x X A B t = x X A t x X B t
75 fveq2 x = t x X A B x = x X A B t
76 fveq2 x = t x X A x = x X A t
77 fveq2 x = t x X B x = x X B t
78 76 77 opeq12d x = t x X A x x X B x = x X A t x X B t
79 75 78 eqeq12d x = t x X A B x = x X A x x X B x x X A B t = x X A t x X B t
80 74 79 rspc t X x X x X A B x = x X A x x X B x x X A B t = x X A t x X B t
81 68 69 80 sylc φ r X t r s x X A B t = x X A t x X B t
82 simpr φ r X t r s t r s
83 82 elin1d φ r X t r s t r
84 8 ad2antrr φ r X t r s x X A : X Y
85 84 ffund φ r X t r s Fun x X A
86 67 adantr φ r X t r s r s X
87 84 fdmd φ r X t r s dom x X A = X
88 86 87 sseqtrrd φ r X t r s r s dom x X A
89 88 82 sseldd φ r X t r s t dom x X A
90 funfvima Fun x X A t dom x X A t r x X A t x X A r
91 85 89 90 syl2anc φ r X t r s t r x X A t x X A r
92 83 91 mpd φ r X t r s x X A t x X A r
93 82 elin2d φ r X t r s t s
94 11 ad2antrr φ r X t r s x X B : X Z
95 94 ffund φ r X t r s Fun x X B
96 94 fdmd φ r X t r s dom x X B = X
97 86 96 sseqtrrd φ r X t r s r s dom x X B
98 97 82 sseldd φ r X t r s t dom x X B
99 funfvima Fun x X B t dom x X B t s x X B t x X B s
100 95 98 99 syl2anc φ r X t r s t s x X B t x X B s
101 93 100 mpd φ r X t r s x X B t x X B s
102 92 101 opelxpd φ r X t r s x X A t x X B t x X A r × x X B s
103 81 102 eqeltrd φ r X t r s x X A B t x X A r × x X B s
104 103 ralrimiva φ r X t r s x X A B t x X A r × x X B s
105 14 ffund φ Fun x X A B
106 105 adantr φ r X Fun x X A B
107 14 fdmd φ dom x X A B = X
108 107 adantr φ r X dom x X A B = X
109 67 108 sseqtrrd φ r X r s dom x X A B
110 funimass4 Fun x X A B r s dom x X A B x X A B r s x X A r × x X B s t r s x X A B t x X A r × x X B s
111 106 109 110 syl2anc φ r X x X A B r s x X A r × x X B s t r s x X A B t x X A r × x X B s
112 104 111 mpbird φ r X x X A B r s x X A r × x X B s
113 65 112 syldan φ r J s J x X A B r s x X A r × x X B s
114 113 adantlr φ v K w L r J s J x X A B r s x X A r × x X B s
115 xpss12 x X A r v x X B s w x X A r × x X B s v × w
116 sstr2 x X A B r s x X A r × x X B s x X A r × x X B s v × w x X A B r s v × w
117 114 115 116 syl2im φ v K w L r J s J x X A r v x X B s w x X A B r s v × w
118 62 117 anim12d φ v K w L r J s J D r D s x X A r v x X B s w D r s x X A B r s v × w
119 59 118 syl5bi φ v K w L r J s J D r x X A r v D s x X B s w D r s x X A B r s v × w
120 topontop J TopOn X J Top
121 1 120 syl φ J Top
122 inopn J Top r J s J r s J
123 122 3expb J Top r J s J r s J
124 121 123 sylan φ r J s J r s J
125 124 adantlr φ v K w L r J s J r s J
126 119 125 jctild φ v K w L r J s J D r x X A r v D s x X B s w r s J D r s x X A B r s v × w
127 126 expimpd φ v K w L r J s J D r x X A r v D s x X B s w r s J D r s x X A B r s v × w
128 eleq2 z = r s D z D r s
129 imaeq2 z = r s x X A B z = x X A B r s
130 129 sseq1d z = r s x X A B z v × w x X A B r s v × w
131 128 130 anbi12d z = r s D z x X A B z v × w D r s x X A B r s v × w
132 131 rspcev r s J D r s x X A B r s v × w z J D z x X A B z v × w
133 127 132 syl6 φ v K w L r J s J D r x X A r v D s x X B s w z J D z x X A B z v × w
134 133 expd φ v K w L r J s J D r x X A r v D s x X B s w z J D z x X A B z v × w
135 134 rexlimdvv φ v K w L r J s J D r x X A r v D s x X B s w z J D z x X A B z v × w
136 58 135 syld φ v K w L x X A B D v × w z J D z x X A B z v × w
137 136 ralrimivva φ v K w L x X A B D v × w z J D z x X A B z v × w
138 vex v V
139 vex w V
140 138 139 xpex v × w V
141 140 rgen2w v K w L v × w V
142 eqid v K , w L v × w = v K , w L v × w
143 eleq2 y = v × w x X A B D y x X A B D v × w
144 sseq2 y = v × w x X A B z y x X A B z v × w
145 144 anbi2d y = v × w D z x X A B z y D z x X A B z v × w
146 145 rexbidv y = v × w z J D z x X A B z y z J D z x X A B z v × w
147 143 146 imbi12d y = v × w x X A B D y z J D z x X A B z y x X A B D v × w z J D z x X A B z v × w
148 142 147 ralrnmpo v K w L v × w V y ran v K , w L v × w x X A B D y z J D z x X A B z y v K w L x X A B D v × w z J D z x X A B z v × w
149 141 148 ax-mp y ran v K , w L v × w x X A B D y z J D z x X A B z y v K w L x X A B D v × w z J D z x X A B z v × w
150 137 149 sylibr φ y ran v K , w L v × w x X A B D y z J D z x X A B z y
151 topontop K TopOn Y K Top
152 2 151 syl φ K Top
153 topontop L TopOn Z L Top
154 3 153 syl φ L Top
155 eqid ran v K , w L v × w = ran v K , w L v × w
156 155 txval K Top L Top K × t L = topGen ran v K , w L v × w
157 152 154 156 syl2anc φ K × t L = topGen ran v K , w L v × w
158 txtopon K TopOn Y L TopOn Z K × t L TopOn Y × Z
159 2 3 158 syl2anc φ K × t L TopOn Y × Z
160 1 157 159 4 tgcnp φ x X A B J CnP K × t L D x X A B : X Y × Z y ran v K , w L v × w x X A B D y z J D z x X A B z y
161 14 150 160 mpbir2and φ x X A B J CnP K × t L D