Step |
Hyp |
Ref |
Expression |
1 |
|
txcnp.4 |
|
2 |
|
txcnp.5 |
|
3 |
|
txcnp.6 |
|
4 |
|
txcnp.7 |
|
5 |
|
txcnp.8 |
|
6 |
|
txcnp.9 |
|
7 |
|
cnpf2 |
|
8 |
1 2 5 7
|
syl3anc |
|
9 |
8
|
fvmptelrn |
|
10 |
|
cnpf2 |
|
11 |
1 3 6 10
|
syl3anc |
|
12 |
11
|
fvmptelrn |
|
13 |
9 12
|
opelxpd |
|
14 |
13
|
fmpttd |
|
15 |
|
simpr |
|
16 |
|
opex |
|
17 |
|
eqid |
|
18 |
17
|
fvmpt2 |
|
19 |
15 16 18
|
sylancl |
|
20 |
|
eqid |
|
21 |
20
|
fvmpt2 |
|
22 |
15 9 21
|
syl2anc |
|
23 |
|
eqid |
|
24 |
23
|
fvmpt2 |
|
25 |
15 12 24
|
syl2anc |
|
26 |
22 25
|
opeq12d |
|
27 |
19 26
|
eqtr4d |
|
28 |
27
|
ralrimiva |
|
29 |
|
nffvmpt1 |
|
30 |
|
nffvmpt1 |
|
31 |
|
nffvmpt1 |
|
32 |
30 31
|
nfop |
|
33 |
29 32
|
nfeq |
|
34 |
|
fveq2 |
|
35 |
|
fveq2 |
|
36 |
|
fveq2 |
|
37 |
35 36
|
opeq12d |
|
38 |
34 37
|
eqeq12d |
|
39 |
33 38
|
rspc |
|
40 |
4 28 39
|
sylc |
|
41 |
40
|
eleq1d |
|
42 |
41
|
adantr |
|
43 |
5
|
ad2antrr |
|
44 |
|
simplrl |
|
45 |
|
simprl |
|
46 |
|
cnpimaex |
|
47 |
43 44 45 46
|
syl3anc |
|
48 |
6
|
ad2antrr |
|
49 |
|
simplrr |
|
50 |
|
simprr |
|
51 |
|
cnpimaex |
|
52 |
48 49 50 51
|
syl3anc |
|
53 |
47 52
|
jca |
|
54 |
53
|
ex |
|
55 |
|
opelxp |
|
56 |
|
reeanv |
|
57 |
54 55 56
|
3imtr4g |
|
58 |
42 57
|
sylbid |
|
59 |
|
an4 |
|
60 |
|
elin |
|
61 |
60
|
biimpri |
|
62 |
61
|
a1i |
|
63 |
|
simpl |
|
64 |
|
toponss |
|
65 |
1 63 64
|
syl2an |
|
66 |
|
ssinss1 |
|
67 |
66
|
adantl |
|
68 |
67
|
sselda |
|
69 |
28
|
ad2antrr |
|
70 |
|
nffvmpt1 |
|
71 |
|
nffvmpt1 |
|
72 |
|
nffvmpt1 |
|
73 |
71 72
|
nfop |
|
74 |
70 73
|
nfeq |
|
75 |
|
fveq2 |
|
76 |
|
fveq2 |
|
77 |
|
fveq2 |
|
78 |
76 77
|
opeq12d |
|
79 |
75 78
|
eqeq12d |
|
80 |
74 79
|
rspc |
|
81 |
68 69 80
|
sylc |
|
82 |
|
simpr |
|
83 |
82
|
elin1d |
|
84 |
8
|
ad2antrr |
|
85 |
84
|
ffund |
|
86 |
67
|
adantr |
|
87 |
84
|
fdmd |
|
88 |
86 87
|
sseqtrrd |
|
89 |
88 82
|
sseldd |
|
90 |
|
funfvima |
|
91 |
85 89 90
|
syl2anc |
|
92 |
83 91
|
mpd |
|
93 |
82
|
elin2d |
|
94 |
11
|
ad2antrr |
|
95 |
94
|
ffund |
|
96 |
94
|
fdmd |
|
97 |
86 96
|
sseqtrrd |
|
98 |
97 82
|
sseldd |
|
99 |
|
funfvima |
|
100 |
95 98 99
|
syl2anc |
|
101 |
93 100
|
mpd |
|
102 |
92 101
|
opelxpd |
|
103 |
81 102
|
eqeltrd |
|
104 |
103
|
ralrimiva |
|
105 |
14
|
ffund |
|
106 |
105
|
adantr |
|
107 |
14
|
fdmd |
|
108 |
107
|
adantr |
|
109 |
67 108
|
sseqtrrd |
|
110 |
|
funimass4 |
|
111 |
106 109 110
|
syl2anc |
|
112 |
104 111
|
mpbird |
|
113 |
65 112
|
syldan |
|
114 |
113
|
adantlr |
|
115 |
|
xpss12 |
|
116 |
|
sstr2 |
|
117 |
114 115 116
|
syl2im |
|
118 |
62 117
|
anim12d |
|
119 |
59 118
|
syl5bi |
|
120 |
|
topontop |
|
121 |
1 120
|
syl |
|
122 |
|
inopn |
|
123 |
122
|
3expb |
|
124 |
121 123
|
sylan |
|
125 |
124
|
adantlr |
|
126 |
119 125
|
jctild |
|
127 |
126
|
expimpd |
|
128 |
|
eleq2 |
|
129 |
|
imaeq2 |
|
130 |
129
|
sseq1d |
|
131 |
128 130
|
anbi12d |
|
132 |
131
|
rspcev |
|
133 |
127 132
|
syl6 |
|
134 |
133
|
expd |
|
135 |
134
|
rexlimdvv |
|
136 |
58 135
|
syld |
|
137 |
136
|
ralrimivva |
|
138 |
|
vex |
|
139 |
|
vex |
|
140 |
138 139
|
xpex |
|
141 |
140
|
rgen2w |
|
142 |
|
eqid |
|
143 |
|
eleq2 |
|
144 |
|
sseq2 |
|
145 |
144
|
anbi2d |
|
146 |
145
|
rexbidv |
|
147 |
143 146
|
imbi12d |
|
148 |
142 147
|
ralrnmpo |
|
149 |
141 148
|
ax-mp |
|
150 |
137 149
|
sylibr |
|
151 |
|
topontop |
|
152 |
2 151
|
syl |
|
153 |
|
topontop |
|
154 |
3 153
|
syl |
|
155 |
|
eqid |
|
156 |
155
|
txval |
|
157 |
152 154 156
|
syl2anc |
|
158 |
|
txtopon |
|
159 |
2 3 158
|
syl2anc |
|
160 |
1 157 159 4
|
tgcnp |
|
161 |
14 150 160
|
mpbir2and |
|