Metamath Proof Explorer


Theorem txcnpi

Description: Continuity of a two-argument function at a point. (Contributed by Mario Carneiro, 20-Sep-2015)

Ref Expression
Hypotheses txcnpi.1 φ J TopOn X
txcnpi.2 φ K TopOn Y
txcnpi.3 φ F J × t K CnP L A B
txcnpi.4 φ U L
txcnpi.5 φ A X
txcnpi.6 φ B Y
txcnpi.7 φ A F B U
Assertion txcnpi φ u J v K A u B v u × v F -1 U

Proof

Step Hyp Ref Expression
1 txcnpi.1 φ J TopOn X
2 txcnpi.2 φ K TopOn Y
3 txcnpi.3 φ F J × t K CnP L A B
4 txcnpi.4 φ U L
5 txcnpi.5 φ A X
6 txcnpi.6 φ B Y
7 txcnpi.7 φ A F B U
8 df-ov A F B = F A B
9 8 7 eqeltrrid φ F A B U
10 cnpimaex F J × t K CnP L A B U L F A B U w J × t K A B w F w U
11 3 4 9 10 syl3anc φ w J × t K A B w F w U
12 eqid J × t K = J × t K
13 eqid L = L
14 12 13 cnpf F J × t K CnP L A B F : J × t K L
15 3 14 syl φ F : J × t K L
16 15 adantr φ w J × t K F : J × t K L
17 16 ffund φ w J × t K Fun F
18 elssuni w J × t K w J × t K
19 15 fdmd φ dom F = J × t K
20 19 sseq2d φ w dom F w J × t K
21 20 biimpar φ w J × t K w dom F
22 18 21 sylan2 φ w J × t K w dom F
23 funimass3 Fun F w dom F F w U w F -1 U
24 17 22 23 syl2anc φ w J × t K F w U w F -1 U
25 24 anbi2d φ w J × t K A B w F w U A B w w F -1 U
26 eltx J TopOn X K TopOn Y w J × t K z w u J v K z u × v u × v w
27 1 2 26 syl2anc φ w J × t K z w u J v K z u × v u × v w
28 27 biimpa φ w J × t K z w u J v K z u × v u × v w
29 eleq1 z = A B z u × v A B u × v
30 29 anbi1d z = A B z u × v u × v w A B u × v u × v w
31 30 2rexbidv z = A B u J v K z u × v u × v w u J v K A B u × v u × v w
32 31 rspccv z w u J v K z u × v u × v w A B w u J v K A B u × v u × v w
33 sstr2 u × v w w F -1 U u × v F -1 U
34 33 com12 w F -1 U u × v w u × v F -1 U
35 34 anim2d w F -1 U A u B v u × v w A u B v u × v F -1 U
36 opelxp A B u × v A u B v
37 36 anbi1i A B u × v u × v w A u B v u × v w
38 df-3an A u B v u × v F -1 U A u B v u × v F -1 U
39 35 37 38 3imtr4g w F -1 U A B u × v u × v w A u B v u × v F -1 U
40 39 reximdv w F -1 U v K A B u × v u × v w v K A u B v u × v F -1 U
41 40 reximdv w F -1 U u J v K A B u × v u × v w u J v K A u B v u × v F -1 U
42 41 com12 u J v K A B u × v u × v w w F -1 U u J v K A u B v u × v F -1 U
43 32 42 syl6 z w u J v K z u × v u × v w A B w w F -1 U u J v K A u B v u × v F -1 U
44 43 impd z w u J v K z u × v u × v w A B w w F -1 U u J v K A u B v u × v F -1 U
45 28 44 syl φ w J × t K A B w w F -1 U u J v K A u B v u × v F -1 U
46 25 45 sylbid φ w J × t K A B w F w U u J v K A u B v u × v F -1 U
47 46 rexlimdva φ w J × t K A B w F w U u J v K A u B v u × v F -1 U
48 11 47 mpd φ u J v K A u B v u × v F -1 U