Metamath Proof Explorer


Theorem txconn

Description: The topological product of two connected spaces is connected. (Contributed by Mario Carneiro, 29-Mar-2015)

Ref Expression
Assertion txconn R Conn S Conn R × t S Conn

Proof

Step Hyp Ref Expression
1 conntop R Conn R Top
2 conntop S Conn S Top
3 txtop R Top S Top R × t S Top
4 1 2 3 syl2an R Conn S Conn R × t S Top
5 neq0 ¬ x = z z x
6 simplr R Conn S Conn x R × t S Clsd R × t S z x x R × t S Clsd R × t S
7 6 elin1d R Conn S Conn x R × t S Clsd R × t S z x x R × t S
8 elssuni x R × t S x R × t S
9 7 8 syl R Conn S Conn x R × t S Clsd R × t S z x x R × t S
10 simprr R Conn S Conn x R × t S Clsd R × t S z x w R × t S w R × t S
11 simplll R Conn S Conn x R × t S Clsd R × t S z x w R × t S R Conn
12 11 1 syl R Conn S Conn x R × t S Clsd R × t S z x w R × t S R Top
13 simpllr R Conn S Conn x R × t S Clsd R × t S z x w R × t S S Conn
14 13 2 syl R Conn S Conn x R × t S Clsd R × t S z x w R × t S S Top
15 eqid R = R
16 eqid S = S
17 15 16 txuni R Top S Top R × S = R × t S
18 12 14 17 syl2anc R Conn S Conn x R × t S Clsd R × t S z x w R × t S R × S = R × t S
19 10 18 eleqtrrd R Conn S Conn x R × t S Clsd R × t S z x w R × t S w R × S
20 1st2nd2 w R × S w = 1 st w 2 nd w
21 19 20 syl R Conn S Conn x R × t S Clsd R × t S z x w R × t S w = 1 st w 2 nd w
22 xp2nd w R × S 2 nd w S
23 19 22 syl R Conn S Conn x R × t S Clsd R × t S z x w R × t S 2 nd w S
24 eqid a S 1 st w a = a S 1 st w a
25 24 mptpreima a S 1 st w a -1 x = a S | 1 st w a x
26 toptopon2 S Top S TopOn S
27 14 26 sylib R Conn S Conn x R × t S Clsd R × t S z x w R × t S S TopOn S
28 toptopon2 R Top R TopOn R
29 12 28 sylib R Conn S Conn x R × t S Clsd R × t S z x w R × t S R TopOn R
30 xp1st w R × S 1 st w R
31 19 30 syl R Conn S Conn x R × t S Clsd R × t S z x w R × t S 1 st w R
32 27 29 31 cnmptc R Conn S Conn x R × t S Clsd R × t S z x w R × t S a S 1 st w S Cn R
33 27 cnmptid R Conn S Conn x R × t S Clsd R × t S z x w R × t S a S a S Cn S
34 27 32 33 cnmpt1t R Conn S Conn x R × t S Clsd R × t S z x w R × t S a S 1 st w a S Cn R × t S
35 simplr R Conn S Conn x R × t S Clsd R × t S z x w R × t S x R × t S Clsd R × t S
36 35 elin1d R Conn S Conn x R × t S Clsd R × t S z x w R × t S x R × t S
37 cnima a S 1 st w a S Cn R × t S x R × t S a S 1 st w a -1 x S
38 34 36 37 syl2anc R Conn S Conn x R × t S Clsd R × t S z x w R × t S a S 1 st w a -1 x S
39 25 38 eqeltrrid R Conn S Conn x R × t S Clsd R × t S z x w R × t S a S | 1 st w a x S
40 simprl R Conn S Conn x R × t S Clsd R × t S z x w R × t S z x
41 elunii z x x R × t S z R × t S
42 40 36 41 syl2anc R Conn S Conn x R × t S Clsd R × t S z x w R × t S z R × t S
43 42 18 eleqtrrd R Conn S Conn x R × t S Clsd R × t S z x w R × t S z R × S
44 xp2nd z R × S 2 nd z S
45 43 44 syl R Conn S Conn x R × t S Clsd R × t S z x w R × t S 2 nd z S
46 eqid a R a 2 nd z = a R a 2 nd z
47 46 mptpreima a R a 2 nd z -1 x = a R | a 2 nd z x
48 29 cnmptid R Conn S Conn x R × t S Clsd R × t S z x w R × t S a R a R Cn R
49 29 27 45 cnmptc R Conn S Conn x R × t S Clsd R × t S z x w R × t S a R 2 nd z R Cn S
50 29 48 49 cnmpt1t R Conn S Conn x R × t S Clsd R × t S z x w R × t S a R a 2 nd z R Cn R × t S
51 cnima a R a 2 nd z R Cn R × t S x R × t S a R a 2 nd z -1 x R
52 50 36 51 syl2anc R Conn S Conn x R × t S Clsd R × t S z x w R × t S a R a 2 nd z -1 x R
53 47 52 eqeltrrid R Conn S Conn x R × t S Clsd R × t S z x w R × t S a R | a 2 nd z x R
54 xp1st z R × S 1 st z R
55 43 54 syl R Conn S Conn x R × t S Clsd R × t S z x w R × t S 1 st z R
56 1st2nd2 z R × S z = 1 st z 2 nd z
57 43 56 syl R Conn S Conn x R × t S Clsd R × t S z x w R × t S z = 1 st z 2 nd z
58 57 40 eqeltrrd R Conn S Conn x R × t S Clsd R × t S z x w R × t S 1 st z 2 nd z x
59 opeq1 a = 1 st z a 2 nd z = 1 st z 2 nd z
60 59 eleq1d a = 1 st z a 2 nd z x 1 st z 2 nd z x
61 60 rspcev 1 st z R 1 st z 2 nd z x a R a 2 nd z x
62 55 58 61 syl2anc R Conn S Conn x R × t S Clsd R × t S z x w R × t S a R a 2 nd z x
63 rabn0 a R | a 2 nd z x a R a 2 nd z x
64 62 63 sylibr R Conn S Conn x R × t S Clsd R × t S z x w R × t S a R | a 2 nd z x
65 35 elin2d R Conn S Conn x R × t S Clsd R × t S z x w R × t S x Clsd R × t S
66 cnclima a R a 2 nd z R Cn R × t S x Clsd R × t S a R a 2 nd z -1 x Clsd R
67 50 65 66 syl2anc R Conn S Conn x R × t S Clsd R × t S z x w R × t S a R a 2 nd z -1 x Clsd R
68 47 67 eqeltrrid R Conn S Conn x R × t S Clsd R × t S z x w R × t S a R | a 2 nd z x Clsd R
69 15 11 53 64 68 connclo R Conn S Conn x R × t S Clsd R × t S z x w R × t S a R | a 2 nd z x = R
70 31 69 eleqtrrd R Conn S Conn x R × t S Clsd R × t S z x w R × t S 1 st w a R | a 2 nd z x
71 opeq1 a = 1 st w a 2 nd z = 1 st w 2 nd z
72 71 eleq1d a = 1 st w a 2 nd z x 1 st w 2 nd z x
73 72 elrab 1 st w a R | a 2 nd z x 1 st w R 1 st w 2 nd z x
74 73 simprbi 1 st w a R | a 2 nd z x 1 st w 2 nd z x
75 70 74 syl R Conn S Conn x R × t S Clsd R × t S z x w R × t S 1 st w 2 nd z x
76 opeq2 a = 2 nd z 1 st w a = 1 st w 2 nd z
77 76 eleq1d a = 2 nd z 1 st w a x 1 st w 2 nd z x
78 77 rspcev 2 nd z S 1 st w 2 nd z x a S 1 st w a x
79 45 75 78 syl2anc R Conn S Conn x R × t S Clsd R × t S z x w R × t S a S 1 st w a x
80 rabn0 a S | 1 st w a x a S 1 st w a x
81 79 80 sylibr R Conn S Conn x R × t S Clsd R × t S z x w R × t S a S | 1 st w a x
82 cnclima a S 1 st w a S Cn R × t S x Clsd R × t S a S 1 st w a -1 x Clsd S
83 34 65 82 syl2anc R Conn S Conn x R × t S Clsd R × t S z x w R × t S a S 1 st w a -1 x Clsd S
84 25 83 eqeltrrid R Conn S Conn x R × t S Clsd R × t S z x w R × t S a S | 1 st w a x Clsd S
85 16 13 39 81 84 connclo R Conn S Conn x R × t S Clsd R × t S z x w R × t S a S | 1 st w a x = S
86 23 85 eleqtrrd R Conn S Conn x R × t S Clsd R × t S z x w R × t S 2 nd w a S | 1 st w a x
87 opeq2 a = 2 nd w 1 st w a = 1 st w 2 nd w
88 87 eleq1d a = 2 nd w 1 st w a x 1 st w 2 nd w x
89 88 elrab 2 nd w a S | 1 st w a x 2 nd w S 1 st w 2 nd w x
90 89 simprbi 2 nd w a S | 1 st w a x 1 st w 2 nd w x
91 86 90 syl R Conn S Conn x R × t S Clsd R × t S z x w R × t S 1 st w 2 nd w x
92 21 91 eqeltrd R Conn S Conn x R × t S Clsd R × t S z x w R × t S w x
93 92 expr R Conn S Conn x R × t S Clsd R × t S z x w R × t S w x
94 93 ssrdv R Conn S Conn x R × t S Clsd R × t S z x R × t S x
95 9 94 eqssd R Conn S Conn x R × t S Clsd R × t S z x x = R × t S
96 95 ex R Conn S Conn x R × t S Clsd R × t S z x x = R × t S
97 96 exlimdv R Conn S Conn x R × t S Clsd R × t S z z x x = R × t S
98 5 97 syl5bi R Conn S Conn x R × t S Clsd R × t S ¬ x = x = R × t S
99 98 orrd R Conn S Conn x R × t S Clsd R × t S x = x = R × t S
100 99 ex R Conn S Conn x R × t S Clsd R × t S x = x = R × t S
101 vex x V
102 101 elpr x R × t S x = x = R × t S
103 100 102 syl6ibr R Conn S Conn x R × t S Clsd R × t S x R × t S
104 103 ssrdv R Conn S Conn R × t S Clsd R × t S R × t S
105 eqid R × t S = R × t S
106 105 isconn2 R × t S Conn R × t S Top R × t S Clsd R × t S R × t S
107 4 104 106 sylanbrc R Conn S Conn R × t S Conn