| Step |
Hyp |
Ref |
Expression |
| 1 |
|
conntop |
|
| 2 |
|
conntop |
|
| 3 |
|
txtop |
|
| 4 |
1 2 3
|
syl2an |
|
| 5 |
|
neq0 |
|
| 6 |
|
simplr |
|
| 7 |
6
|
elin1d |
|
| 8 |
|
elssuni |
|
| 9 |
7 8
|
syl |
|
| 10 |
|
simprr |
|
| 11 |
|
simplll |
|
| 12 |
11 1
|
syl |
|
| 13 |
|
simpllr |
|
| 14 |
13 2
|
syl |
|
| 15 |
|
eqid |
|
| 16 |
|
eqid |
|
| 17 |
15 16
|
txuni |
|
| 18 |
12 14 17
|
syl2anc |
|
| 19 |
10 18
|
eleqtrrd |
|
| 20 |
|
1st2nd2 |
|
| 21 |
19 20
|
syl |
|
| 22 |
|
xp2nd |
|
| 23 |
19 22
|
syl |
|
| 24 |
|
eqid |
|
| 25 |
24
|
mptpreima |
|
| 26 |
|
toptopon2 |
|
| 27 |
14 26
|
sylib |
|
| 28 |
|
toptopon2 |
|
| 29 |
12 28
|
sylib |
|
| 30 |
|
xp1st |
|
| 31 |
19 30
|
syl |
|
| 32 |
27 29 31
|
cnmptc |
|
| 33 |
27
|
cnmptid |
|
| 34 |
27 32 33
|
cnmpt1t |
|
| 35 |
|
simplr |
|
| 36 |
35
|
elin1d |
|
| 37 |
|
cnima |
|
| 38 |
34 36 37
|
syl2anc |
|
| 39 |
25 38
|
eqeltrrid |
|
| 40 |
|
simprl |
|
| 41 |
|
elunii |
|
| 42 |
40 36 41
|
syl2anc |
|
| 43 |
42 18
|
eleqtrrd |
|
| 44 |
|
xp2nd |
|
| 45 |
43 44
|
syl |
|
| 46 |
|
eqid |
|
| 47 |
46
|
mptpreima |
|
| 48 |
29
|
cnmptid |
|
| 49 |
29 27 45
|
cnmptc |
|
| 50 |
29 48 49
|
cnmpt1t |
|
| 51 |
|
cnima |
|
| 52 |
50 36 51
|
syl2anc |
|
| 53 |
47 52
|
eqeltrrid |
|
| 54 |
|
xp1st |
|
| 55 |
43 54
|
syl |
|
| 56 |
|
1st2nd2 |
|
| 57 |
43 56
|
syl |
|
| 58 |
57 40
|
eqeltrrd |
|
| 59 |
|
opeq1 |
|
| 60 |
59
|
eleq1d |
|
| 61 |
60
|
rspcev |
|
| 62 |
55 58 61
|
syl2anc |
|
| 63 |
|
rabn0 |
|
| 64 |
62 63
|
sylibr |
|
| 65 |
35
|
elin2d |
|
| 66 |
|
cnclima |
|
| 67 |
50 65 66
|
syl2anc |
|
| 68 |
47 67
|
eqeltrrid |
|
| 69 |
15 11 53 64 68
|
connclo |
|
| 70 |
31 69
|
eleqtrrd |
|
| 71 |
|
opeq1 |
|
| 72 |
71
|
eleq1d |
|
| 73 |
72
|
elrab |
|
| 74 |
73
|
simprbi |
|
| 75 |
70 74
|
syl |
|
| 76 |
|
opeq2 |
|
| 77 |
76
|
eleq1d |
|
| 78 |
77
|
rspcev |
|
| 79 |
45 75 78
|
syl2anc |
|
| 80 |
|
rabn0 |
|
| 81 |
79 80
|
sylibr |
|
| 82 |
|
cnclima |
|
| 83 |
34 65 82
|
syl2anc |
|
| 84 |
25 83
|
eqeltrrid |
|
| 85 |
16 13 39 81 84
|
connclo |
|
| 86 |
23 85
|
eleqtrrd |
|
| 87 |
|
opeq2 |
|
| 88 |
87
|
eleq1d |
|
| 89 |
88
|
elrab |
|
| 90 |
89
|
simprbi |
|
| 91 |
86 90
|
syl |
|
| 92 |
21 91
|
eqeltrd |
|
| 93 |
92
|
expr |
|
| 94 |
93
|
ssrdv |
|
| 95 |
9 94
|
eqssd |
|
| 96 |
95
|
ex |
|
| 97 |
96
|
exlimdv |
|
| 98 |
5 97
|
biimtrid |
|
| 99 |
98
|
orrd |
|
| 100 |
99
|
ex |
|
| 101 |
|
vex |
|
| 102 |
101
|
elpr |
|
| 103 |
100 102
|
imbitrrdi |
|
| 104 |
103
|
ssrdv |
|
| 105 |
|
eqid |
|
| 106 |
105
|
isconn2 |
|
| 107 |
4 104 106
|
sylanbrc |
|