Metamath Proof Explorer


Theorem txhaus

Description: The topological product of two Hausdorff spaces is Hausdorff. (Contributed by Mario Carneiro, 23-Mar-2015)

Ref Expression
Assertion txhaus R Haus S Haus R × t S Haus

Proof

Step Hyp Ref Expression
1 haustop R Haus R Top
2 haustop S Haus S Top
3 txtop R Top S Top R × t S Top
4 1 2 3 syl2an R Haus S Haus R × t S Top
5 eqid R = R
6 eqid S = S
7 5 6 txuni R Top S Top R × S = R × t S
8 1 2 7 syl2an R Haus S Haus R × S = R × t S
9 8 eleq2d R Haus S Haus x R × S x R × t S
10 8 eleq2d R Haus S Haus y R × S y R × t S
11 9 10 anbi12d R Haus S Haus x R × S y R × S x R × t S y R × t S
12 neorian 1 st x 1 st y 2 nd x 2 nd y ¬ 1 st x = 1 st y 2 nd x = 2 nd y
13 xpopth x R × S y R × S 1 st x = 1 st y 2 nd x = 2 nd y x = y
14 13 adantl R Haus S Haus x R × S y R × S 1 st x = 1 st y 2 nd x = 2 nd y x = y
15 14 necon3bbid R Haus S Haus x R × S y R × S ¬ 1 st x = 1 st y 2 nd x = 2 nd y x y
16 12 15 syl5bb R Haus S Haus x R × S y R × S 1 st x 1 st y 2 nd x 2 nd y x y
17 simplll R Haus S Haus x R × S y R × S 1 st x 1 st y R Haus
18 xp1st x R × S 1 st x R
19 18 ad2antrl R Haus S Haus x R × S y R × S 1 st x R
20 19 adantr R Haus S Haus x R × S y R × S 1 st x 1 st y 1 st x R
21 xp1st y R × S 1 st y R
22 21 ad2antll R Haus S Haus x R × S y R × S 1 st y R
23 22 adantr R Haus S Haus x R × S y R × S 1 st x 1 st y 1 st y R
24 simpr R Haus S Haus x R × S y R × S 1 st x 1 st y 1 st x 1 st y
25 5 hausnei R Haus 1 st x R 1 st y R 1 st x 1 st y u R v R 1 st x u 1 st y v u v =
26 17 20 23 24 25 syl13anc R Haus S Haus x R × S y R × S 1 st x 1 st y u R v R 1 st x u 1 st y v u v =
27 1 ad2antrr R Haus S Haus x R × S y R × S R Top
28 27 ad2antrr R Haus S Haus x R × S y R × S 1 st x 1 st y u R v R 1 st x u 1 st y v u v = R Top
29 2 ad4antlr R Haus S Haus x R × S y R × S 1 st x 1 st y u R v R 1 st x u 1 st y v u v = S Top
30 simprll R Haus S Haus x R × S y R × S 1 st x 1 st y u R v R 1 st x u 1 st y v u v = u R
31 6 topopn S Top S S
32 29 31 syl R Haus S Haus x R × S y R × S 1 st x 1 st y u R v R 1 st x u 1 st y v u v = S S
33 txopn R Top S Top u R S S u × S R × t S
34 28 29 30 32 33 syl22anc R Haus S Haus x R × S y R × S 1 st x 1 st y u R v R 1 st x u 1 st y v u v = u × S R × t S
35 simprlr R Haus S Haus x R × S y R × S 1 st x 1 st y u R v R 1 st x u 1 st y v u v = v R
36 txopn R Top S Top v R S S v × S R × t S
37 28 29 35 32 36 syl22anc R Haus S Haus x R × S y R × S 1 st x 1 st y u R v R 1 st x u 1 st y v u v = v × S R × t S
38 1st2nd2 x R × S x = 1 st x 2 nd x
39 38 ad2antrl R Haus S Haus x R × S y R × S x = 1 st x 2 nd x
40 39 ad2antrr R Haus S Haus x R × S y R × S 1 st x 1 st y u R v R 1 st x u 1 st y v u v = x = 1 st x 2 nd x
41 simprr1 R Haus S Haus x R × S y R × S 1 st x 1 st y u R v R 1 st x u 1 st y v u v = 1 st x u
42 xp2nd x R × S 2 nd x S
43 42 ad2antrl R Haus S Haus x R × S y R × S 2 nd x S
44 43 ad2antrr R Haus S Haus x R × S y R × S 1 st x 1 st y u R v R 1 st x u 1 st y v u v = 2 nd x S
45 41 44 jca R Haus S Haus x R × S y R × S 1 st x 1 st y u R v R 1 st x u 1 st y v u v = 1 st x u 2 nd x S
46 elxp6 x u × S x = 1 st x 2 nd x 1 st x u 2 nd x S
47 40 45 46 sylanbrc R Haus S Haus x R × S y R × S 1 st x 1 st y u R v R 1 st x u 1 st y v u v = x u × S
48 1st2nd2 y R × S y = 1 st y 2 nd y
49 48 ad2antll R Haus S Haus x R × S y R × S y = 1 st y 2 nd y
50 49 ad2antrr R Haus S Haus x R × S y R × S 1 st x 1 st y u R v R 1 st x u 1 st y v u v = y = 1 st y 2 nd y
51 simprr2 R Haus S Haus x R × S y R × S 1 st x 1 st y u R v R 1 st x u 1 st y v u v = 1 st y v
52 xp2nd y R × S 2 nd y S
53 52 ad2antll R Haus S Haus x R × S y R × S 2 nd y S
54 53 ad2antrr R Haus S Haus x R × S y R × S 1 st x 1 st y u R v R 1 st x u 1 st y v u v = 2 nd y S
55 51 54 jca R Haus S Haus x R × S y R × S 1 st x 1 st y u R v R 1 st x u 1 st y v u v = 1 st y v 2 nd y S
56 elxp6 y v × S y = 1 st y 2 nd y 1 st y v 2 nd y S
57 50 55 56 sylanbrc R Haus S Haus x R × S y R × S 1 st x 1 st y u R v R 1 st x u 1 st y v u v = y v × S
58 simprr3 R Haus S Haus x R × S y R × S 1 st x 1 st y u R v R 1 st x u 1 st y v u v = u v =
59 58 xpeq1d R Haus S Haus x R × S y R × S 1 st x 1 st y u R v R 1 st x u 1 st y v u v = u v × S = × S
60 xpindir u v × S = u × S v × S
61 0xp × S =
62 59 60 61 3eqtr3g R Haus S Haus x R × S y R × S 1 st x 1 st y u R v R 1 st x u 1 st y v u v = u × S v × S =
63 eleq2 z = u × S x z x u × S
64 ineq1 z = u × S z w = u × S w
65 64 eqeq1d z = u × S z w = u × S w =
66 63 65 3anbi13d z = u × S x z y w z w = x u × S y w u × S w =
67 eleq2 w = v × S y w y v × S
68 ineq2 w = v × S u × S w = u × S v × S
69 68 eqeq1d w = v × S u × S w = u × S v × S =
70 67 69 3anbi23d w = v × S x u × S y w u × S w = x u × S y v × S u × S v × S =
71 66 70 rspc2ev u × S R × t S v × S R × t S x u × S y v × S u × S v × S = z R × t S w R × t S x z y w z w =
72 34 37 47 57 62 71 syl113anc R Haus S Haus x R × S y R × S 1 st x 1 st y u R v R 1 st x u 1 st y v u v = z R × t S w R × t S x z y w z w =
73 72 expr R Haus S Haus x R × S y R × S 1 st x 1 st y u R v R 1 st x u 1 st y v u v = z R × t S w R × t S x z y w z w =
74 73 rexlimdvva R Haus S Haus x R × S y R × S 1 st x 1 st y u R v R 1 st x u 1 st y v u v = z R × t S w R × t S x z y w z w =
75 26 74 mpd R Haus S Haus x R × S y R × S 1 st x 1 st y z R × t S w R × t S x z y w z w =
76 simpllr R Haus S Haus x R × S y R × S 2 nd x 2 nd y S Haus
77 43 adantr R Haus S Haus x R × S y R × S 2 nd x 2 nd y 2 nd x S
78 53 adantr R Haus S Haus x R × S y R × S 2 nd x 2 nd y 2 nd y S
79 simpr R Haus S Haus x R × S y R × S 2 nd x 2 nd y 2 nd x 2 nd y
80 6 hausnei S Haus 2 nd x S 2 nd y S 2 nd x 2 nd y u S v S 2 nd x u 2 nd y v u v =
81 76 77 78 79 80 syl13anc R Haus S Haus x R × S y R × S 2 nd x 2 nd y u S v S 2 nd x u 2 nd y v u v =
82 27 ad2antrr R Haus S Haus x R × S y R × S 2 nd x 2 nd y u S v S 2 nd x u 2 nd y v u v = R Top
83 2 ad4antlr R Haus S Haus x R × S y R × S 2 nd x 2 nd y u S v S 2 nd x u 2 nd y v u v = S Top
84 5 topopn R Top R R
85 82 84 syl R Haus S Haus x R × S y R × S 2 nd x 2 nd y u S v S 2 nd x u 2 nd y v u v = R R
86 simprll R Haus S Haus x R × S y R × S 2 nd x 2 nd y u S v S 2 nd x u 2 nd y v u v = u S
87 txopn R Top S Top R R u S R × u R × t S
88 82 83 85 86 87 syl22anc R Haus S Haus x R × S y R × S 2 nd x 2 nd y u S v S 2 nd x u 2 nd y v u v = R × u R × t S
89 simprlr R Haus S Haus x R × S y R × S 2 nd x 2 nd y u S v S 2 nd x u 2 nd y v u v = v S
90 txopn R Top S Top R R v S R × v R × t S
91 82 83 85 89 90 syl22anc R Haus S Haus x R × S y R × S 2 nd x 2 nd y u S v S 2 nd x u 2 nd y v u v = R × v R × t S
92 39 ad2antrr R Haus S Haus x R × S y R × S 2 nd x 2 nd y u S v S 2 nd x u 2 nd y v u v = x = 1 st x 2 nd x
93 19 ad2antrr R Haus S Haus x R × S y R × S 2 nd x 2 nd y u S v S 2 nd x u 2 nd y v u v = 1 st x R
94 simprr1 R Haus S Haus x R × S y R × S 2 nd x 2 nd y u S v S 2 nd x u 2 nd y v u v = 2 nd x u
95 93 94 jca R Haus S Haus x R × S y R × S 2 nd x 2 nd y u S v S 2 nd x u 2 nd y v u v = 1 st x R 2 nd x u
96 elxp6 x R × u x = 1 st x 2 nd x 1 st x R 2 nd x u
97 92 95 96 sylanbrc R Haus S Haus x R × S y R × S 2 nd x 2 nd y u S v S 2 nd x u 2 nd y v u v = x R × u
98 49 ad2antrr R Haus S Haus x R × S y R × S 2 nd x 2 nd y u S v S 2 nd x u 2 nd y v u v = y = 1 st y 2 nd y
99 22 ad2antrr R Haus S Haus x R × S y R × S 2 nd x 2 nd y u S v S 2 nd x u 2 nd y v u v = 1 st y R
100 simprr2 R Haus S Haus x R × S y R × S 2 nd x 2 nd y u S v S 2 nd x u 2 nd y v u v = 2 nd y v
101 99 100 jca R Haus S Haus x R × S y R × S 2 nd x 2 nd y u S v S 2 nd x u 2 nd y v u v = 1 st y R 2 nd y v
102 elxp6 y R × v y = 1 st y 2 nd y 1 st y R 2 nd y v
103 98 101 102 sylanbrc R Haus S Haus x R × S y R × S 2 nd x 2 nd y u S v S 2 nd x u 2 nd y v u v = y R × v
104 simprr3 R Haus S Haus x R × S y R × S 2 nd x 2 nd y u S v S 2 nd x u 2 nd y v u v = u v =
105 104 xpeq2d R Haus S Haus x R × S y R × S 2 nd x 2 nd y u S v S 2 nd x u 2 nd y v u v = R × u v = R ×
106 xpindi R × u v = R × u R × v
107 xp0 R × =
108 105 106 107 3eqtr3g R Haus S Haus x R × S y R × S 2 nd x 2 nd y u S v S 2 nd x u 2 nd y v u v = R × u R × v =
109 eleq2 z = R × u x z x R × u
110 ineq1 z = R × u z w = R × u w
111 110 eqeq1d z = R × u z w = R × u w =
112 109 111 3anbi13d z = R × u x z y w z w = x R × u y w R × u w =
113 eleq2 w = R × v y w y R × v
114 ineq2 w = R × v R × u w = R × u R × v
115 114 eqeq1d w = R × v R × u w = R × u R × v =
116 113 115 3anbi23d w = R × v x R × u y w R × u w = x R × u y R × v R × u R × v =
117 112 116 rspc2ev R × u R × t S R × v R × t S x R × u y R × v R × u R × v = z R × t S w R × t S x z y w z w =
118 88 91 97 103 108 117 syl113anc R Haus S Haus x R × S y R × S 2 nd x 2 nd y u S v S 2 nd x u 2 nd y v u v = z R × t S w R × t S x z y w z w =
119 118 expr R Haus S Haus x R × S y R × S 2 nd x 2 nd y u S v S 2 nd x u 2 nd y v u v = z R × t S w R × t S x z y w z w =
120 119 rexlimdvva R Haus S Haus x R × S y R × S 2 nd x 2 nd y u S v S 2 nd x u 2 nd y v u v = z R × t S w R × t S x z y w z w =
121 81 120 mpd R Haus S Haus x R × S y R × S 2 nd x 2 nd y z R × t S w R × t S x z y w z w =
122 75 121 jaodan R Haus S Haus x R × S y R × S 1 st x 1 st y 2 nd x 2 nd y z R × t S w R × t S x z y w z w =
123 122 ex R Haus S Haus x R × S y R × S 1 st x 1 st y 2 nd x 2 nd y z R × t S w R × t S x z y w z w =
124 16 123 sylbird R Haus S Haus x R × S y R × S x y z R × t S w R × t S x z y w z w =
125 124 ex R Haus S Haus x R × S y R × S x y z R × t S w R × t S x z y w z w =
126 11 125 sylbird R Haus S Haus x R × t S y R × t S x y z R × t S w R × t S x z y w z w =
127 126 ralrimivv R Haus S Haus x R × t S y R × t S x y z R × t S w R × t S x z y w z w =
128 eqid R × t S = R × t S
129 128 ishaus R × t S Haus R × t S Top x R × t S y R × t S x y z R × t S w R × t S x z y w z w =
130 4 127 129 sylanbrc R Haus S Haus R × t S Haus