Step |
Hyp |
Ref |
Expression |
1 |
|
neq0 |
|
2 |
|
indistop |
|
3 |
|
indistop |
|
4 |
|
eltx |
|
5 |
2 3 4
|
mp2an |
|
6 |
|
rsp |
|
7 |
5 6
|
sylbi |
|
8 |
|
elssuni |
|
9 |
|
indisuni |
|
10 |
|
indisuni |
|
11 |
2 3 9 10
|
txunii |
|
12 |
8 11
|
sseqtrrdi |
|
13 |
12
|
ad2antrr |
|
14 |
|
ne0i |
|
15 |
14
|
ad2antrl |
|
16 |
|
xpnz |
|
17 |
15 16
|
sylibr |
|
18 |
17
|
simpld |
|
19 |
18
|
neneqd |
|
20 |
|
simpll |
|
21 |
|
indislem |
|
22 |
20 21
|
eleqtrrdi |
|
23 |
|
elpri |
|
24 |
22 23
|
syl |
|
25 |
24
|
ord |
|
26 |
19 25
|
mpd |
|
27 |
17
|
simprd |
|
28 |
27
|
neneqd |
|
29 |
|
simplr |
|
30 |
|
indislem |
|
31 |
29 30
|
eleqtrrdi |
|
32 |
|
elpri |
|
33 |
31 32
|
syl |
|
34 |
33
|
ord |
|
35 |
28 34
|
mpd |
|
36 |
26 35
|
xpeq12d |
|
37 |
|
simprr |
|
38 |
36 37
|
eqsstrrd |
|
39 |
38
|
adantll |
|
40 |
13 39
|
eqssd |
|
41 |
40
|
ex |
|
42 |
41
|
rexlimdvva |
|
43 |
7 42
|
syld |
|
44 |
43
|
exlimdv |
|
45 |
1 44
|
syl5bi |
|
46 |
45
|
orrd |
|
47 |
|
vex |
|
48 |
47
|
elpr |
|
49 |
46 48
|
sylibr |
|
50 |
49
|
ssriv |
|
51 |
9
|
toptopon |
|
52 |
2 51
|
mpbi |
|
53 |
10
|
toptopon |
|
54 |
3 53
|
mpbi |
|
55 |
|
txtopon |
|
56 |
52 54 55
|
mp2an |
|
57 |
|
topgele |
|
58 |
56 57
|
ax-mp |
|
59 |
58
|
simpli |
|
60 |
50 59
|
eqssi |
|
61 |
|
txindislem |
|
62 |
61
|
preq2i |
|
63 |
|
indislem |
|
64 |
60 62 63
|
3eqtri |
|