Metamath Proof Explorer


Theorem txindislem

Description: Lemma for txindis . (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion txindislem I A × I B = I A × B

Proof

Step Hyp Ref Expression
1 0xp × I B =
2 fvprc ¬ A V I A =
3 2 xpeq1d ¬ A V I A × I B = × I B
4 simpr ¬ A V B = B =
5 4 xpeq2d ¬ A V B = A × B = A ×
6 xp0 A × =
7 5 6 eqtrdi ¬ A V B = A × B =
8 7 fveq2d ¬ A V B = I A × B = I
9 0ex V
10 fvi V I =
11 9 10 ax-mp I =
12 8 11 eqtrdi ¬ A V B = I A × B =
13 dmexg A × B V dom A × B V
14 dmxp B dom A × B = A
15 14 eleq1d B dom A × B V A V
16 13 15 syl5ib B A × B V A V
17 16 con3d B ¬ A V ¬ A × B V
18 17 impcom ¬ A V B ¬ A × B V
19 fvprc ¬ A × B V I A × B =
20 18 19 syl ¬ A V B I A × B =
21 12 20 pm2.61dane ¬ A V I A × B =
22 1 3 21 3eqtr4a ¬ A V I A × I B = I A × B
23 xp0 I A × =
24 fvprc ¬ B V I B =
25 24 xpeq2d ¬ B V I A × I B = I A ×
26 simpr ¬ B V A = A =
27 26 xpeq1d ¬ B V A = A × B = × B
28 0xp × B =
29 27 28 eqtrdi ¬ B V A = A × B =
30 29 fveq2d ¬ B V A = I A × B = I
31 30 11 eqtrdi ¬ B V A = I A × B =
32 rnexg A × B V ran A × B V
33 rnxp A ran A × B = B
34 33 eleq1d A ran A × B V B V
35 32 34 syl5ib A A × B V B V
36 35 con3d A ¬ B V ¬ A × B V
37 36 impcom ¬ B V A ¬ A × B V
38 37 19 syl ¬ B V A I A × B =
39 31 38 pm2.61dane ¬ B V I A × B =
40 23 25 39 3eqtr4a ¬ B V I A × I B = I A × B
41 fvi A V I A = A
42 fvi B V I B = B
43 xpeq12 I A = A I B = B I A × I B = A × B
44 41 42 43 syl2an A V B V I A × I B = A × B
45 xpexg A V B V A × B V
46 fvi A × B V I A × B = A × B
47 45 46 syl A V B V I A × B = A × B
48 44 47 eqtr4d A V B V I A × I B = I A × B
49 22 40 48 ecase I A × I B = I A × B