Metamath Proof Explorer


Theorem txlly

Description: If the property A is preserved under topological products, then so is the property of being locally A . (Contributed by Mario Carneiro, 10-Mar-2015)

Ref Expression
Hypothesis txlly.1 j A k A j × t k A
Assertion txlly R Locally A S Locally A R × t S Locally A

Proof

Step Hyp Ref Expression
1 txlly.1 j A k A j × t k A
2 llytop R Locally A R Top
3 llytop S Locally A S Top
4 txtop R Top S Top R × t S Top
5 2 3 4 syl2an R Locally A S Locally A R × t S Top
6 eltx R Locally A S Locally A x R × t S y x u R v S y u × v u × v x
7 simpll R Locally A S Locally A u R v S y u × v u × v x R Locally A
8 simprll R Locally A S Locally A u R v S y u × v u × v x u R
9 simprrl R Locally A S Locally A u R v S y u × v u × v x y u × v
10 xp1st y u × v 1 st y u
11 9 10 syl R Locally A S Locally A u R v S y u × v u × v x 1 st y u
12 llyi R Locally A u R 1 st y u r R r u 1 st y r R 𝑡 r A
13 7 8 11 12 syl3anc R Locally A S Locally A u R v S y u × v u × v x r R r u 1 st y r R 𝑡 r A
14 simplr R Locally A S Locally A u R v S y u × v u × v x S Locally A
15 simprlr R Locally A S Locally A u R v S y u × v u × v x v S
16 xp2nd y u × v 2 nd y v
17 9 16 syl R Locally A S Locally A u R v S y u × v u × v x 2 nd y v
18 llyi S Locally A v S 2 nd y v s S s v 2 nd y s S 𝑡 s A
19 14 15 17 18 syl3anc R Locally A S Locally A u R v S y u × v u × v x s S s v 2 nd y s S 𝑡 s A
20 reeanv r R s S r u 1 st y r R 𝑡 r A s v 2 nd y s S 𝑡 s A r R r u 1 st y r R 𝑡 r A s S s v 2 nd y s S 𝑡 s A
21 2 ad3antrrr R Locally A S Locally A u R v S y u × v u × v x r R s S r u 1 st y r R 𝑡 r A s v 2 nd y s S 𝑡 s A R Top
22 3 ad3antlr R Locally A S Locally A u R v S y u × v u × v x r R s S r u 1 st y r R 𝑡 r A s v 2 nd y s S 𝑡 s A S Top
23 simprll R Locally A S Locally A u R v S y u × v u × v x r R s S r u 1 st y r R 𝑡 r A s v 2 nd y s S 𝑡 s A r R
24 simprlr R Locally A S Locally A u R v S y u × v u × v x r R s S r u 1 st y r R 𝑡 r A s v 2 nd y s S 𝑡 s A s S
25 txopn R Top S Top r R s S r × s R × t S
26 21 22 23 24 25 syl22anc R Locally A S Locally A u R v S y u × v u × v x r R s S r u 1 st y r R 𝑡 r A s v 2 nd y s S 𝑡 s A r × s R × t S
27 simprl1 r R s S r u 1 st y r R 𝑡 r A s v 2 nd y s S 𝑡 s A r u
28 simprr1 r R s S r u 1 st y r R 𝑡 r A s v 2 nd y s S 𝑡 s A s v
29 xpss12 r u s v r × s u × v
30 27 28 29 syl2anc r R s S r u 1 st y r R 𝑡 r A s v 2 nd y s S 𝑡 s A r × s u × v
31 simprrr R Locally A S Locally A u R v S y u × v u × v x u × v x
32 30 31 sylan9ssr R Locally A S Locally A u R v S y u × v u × v x r R s S r u 1 st y r R 𝑡 r A s v 2 nd y s S 𝑡 s A r × s x
33 vex x V
34 33 elpw2 r × s 𝒫 x r × s x
35 32 34 sylibr R Locally A S Locally A u R v S y u × v u × v x r R s S r u 1 st y r R 𝑡 r A s v 2 nd y s S 𝑡 s A r × s 𝒫 x
36 26 35 elind R Locally A S Locally A u R v S y u × v u × v x r R s S r u 1 st y r R 𝑡 r A s v 2 nd y s S 𝑡 s A r × s R × t S 𝒫 x
37 1st2nd2 y u × v y = 1 st y 2 nd y
38 9 37 syl R Locally A S Locally A u R v S y u × v u × v x y = 1 st y 2 nd y
39 38 adantr R Locally A S Locally A u R v S y u × v u × v x r R s S r u 1 st y r R 𝑡 r A s v 2 nd y s S 𝑡 s A y = 1 st y 2 nd y
40 simprl2 r R s S r u 1 st y r R 𝑡 r A s v 2 nd y s S 𝑡 s A 1 st y r
41 simprr2 r R s S r u 1 st y r R 𝑡 r A s v 2 nd y s S 𝑡 s A 2 nd y s
42 40 41 opelxpd r R s S r u 1 st y r R 𝑡 r A s v 2 nd y s S 𝑡 s A 1 st y 2 nd y r × s
43 42 adantl R Locally A S Locally A u R v S y u × v u × v x r R s S r u 1 st y r R 𝑡 r A s v 2 nd y s S 𝑡 s A 1 st y 2 nd y r × s
44 39 43 eqeltrd R Locally A S Locally A u R v S y u × v u × v x r R s S r u 1 st y r R 𝑡 r A s v 2 nd y s S 𝑡 s A y r × s
45 txrest R Top S Top r R s S R × t S 𝑡 r × s = R 𝑡 r × t S 𝑡 s
46 21 22 23 24 45 syl22anc R Locally A S Locally A u R v S y u × v u × v x r R s S r u 1 st y r R 𝑡 r A s v 2 nd y s S 𝑡 s A R × t S 𝑡 r × s = R 𝑡 r × t S 𝑡 s
47 simprl3 r R s S r u 1 st y r R 𝑡 r A s v 2 nd y s S 𝑡 s A R 𝑡 r A
48 simprr3 r R s S r u 1 st y r R 𝑡 r A s v 2 nd y s S 𝑡 s A S 𝑡 s A
49 1 caovcl R 𝑡 r A S 𝑡 s A R 𝑡 r × t S 𝑡 s A
50 47 48 49 syl2anc r R s S r u 1 st y r R 𝑡 r A s v 2 nd y s S 𝑡 s A R 𝑡 r × t S 𝑡 s A
51 50 adantl R Locally A S Locally A u R v S y u × v u × v x r R s S r u 1 st y r R 𝑡 r A s v 2 nd y s S 𝑡 s A R 𝑡 r × t S 𝑡 s A
52 46 51 eqeltrd R Locally A S Locally A u R v S y u × v u × v x r R s S r u 1 st y r R 𝑡 r A s v 2 nd y s S 𝑡 s A R × t S 𝑡 r × s A
53 eleq2 z = r × s y z y r × s
54 oveq2 z = r × s R × t S 𝑡 z = R × t S 𝑡 r × s
55 54 eleq1d z = r × s R × t S 𝑡 z A R × t S 𝑡 r × s A
56 53 55 anbi12d z = r × s y z R × t S 𝑡 z A y r × s R × t S 𝑡 r × s A
57 56 rspcev r × s R × t S 𝒫 x y r × s R × t S 𝑡 r × s A z R × t S 𝒫 x y z R × t S 𝑡 z A
58 36 44 52 57 syl12anc R Locally A S Locally A u R v S y u × v u × v x r R s S r u 1 st y r R 𝑡 r A s v 2 nd y s S 𝑡 s A z R × t S 𝒫 x y z R × t S 𝑡 z A
59 58 expr R Locally A S Locally A u R v S y u × v u × v x r R s S r u 1 st y r R 𝑡 r A s v 2 nd y s S 𝑡 s A z R × t S 𝒫 x y z R × t S 𝑡 z A
60 59 rexlimdvva R Locally A S Locally A u R v S y u × v u × v x r R s S r u 1 st y r R 𝑡 r A s v 2 nd y s S 𝑡 s A z R × t S 𝒫 x y z R × t S 𝑡 z A
61 20 60 syl5bir R Locally A S Locally A u R v S y u × v u × v x r R r u 1 st y r R 𝑡 r A s S s v 2 nd y s S 𝑡 s A z R × t S 𝒫 x y z R × t S 𝑡 z A
62 13 19 61 mp2and R Locally A S Locally A u R v S y u × v u × v x z R × t S 𝒫 x y z R × t S 𝑡 z A
63 62 expr R Locally A S Locally A u R v S y u × v u × v x z R × t S 𝒫 x y z R × t S 𝑡 z A
64 63 rexlimdvva R Locally A S Locally A u R v S y u × v u × v x z R × t S 𝒫 x y z R × t S 𝑡 z A
65 64 ralimdv R Locally A S Locally A y x u R v S y u × v u × v x y x z R × t S 𝒫 x y z R × t S 𝑡 z A
66 6 65 sylbid R Locally A S Locally A x R × t S y x z R × t S 𝒫 x y z R × t S 𝑡 z A
67 66 ralrimiv R Locally A S Locally A x R × t S y x z R × t S 𝒫 x y z R × t S 𝑡 z A
68 islly R × t S Locally A R × t S Top x R × t S y x z R × t S 𝒫 x y z R × t S 𝑡 z A
69 5 67 68 sylanbrc R Locally A S Locally A R × t S Locally A