Metamath Proof Explorer


Theorem txmetcnp

Description: Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses metcn.2 J=MetOpenC
metcn.4 K=MetOpenD
txmetcnp.4 L=MetOpenE
Assertion txmetcnp C∞MetXD∞MetYE∞MetZAXBYFJ×tKCnPLABF:X×YZz+w+uXvYACu<wBDv<wAFBEuFv<z

Proof

Step Hyp Ref Expression
1 metcn.2 J=MetOpenC
2 metcn.4 K=MetOpenD
3 txmetcnp.4 L=MetOpenE
4 eqid disttoMetSpC×𝑠toMetSpD=disttoMetSpC×𝑠toMetSpD
5 simpl1 C∞MetXD∞MetYE∞MetZAXBYC∞MetX
6 simpl2 C∞MetXD∞MetYE∞MetZAXBYD∞MetY
7 4 5 6 tmsxps C∞MetXD∞MetYE∞MetZAXBYdisttoMetSpC×𝑠toMetSpD∞MetX×Y
8 simpl3 C∞MetXD∞MetYE∞MetZAXBYE∞MetZ
9 opelxpi AXBYABX×Y
10 9 adantl C∞MetXD∞MetYE∞MetZAXBYABX×Y
11 eqid MetOpendisttoMetSpC×𝑠toMetSpD=MetOpendisttoMetSpC×𝑠toMetSpD
12 11 3 metcnp disttoMetSpC×𝑠toMetSpD∞MetX×YE∞MetZABX×YFMetOpendisttoMetSpC×𝑠toMetSpDCnPLABF:X×YZz+w+xX×YABdisttoMetSpC×𝑠toMetSpDx<wFABEFx<z
13 7 8 10 12 syl3anc C∞MetXD∞MetYE∞MetZAXBYFMetOpendisttoMetSpC×𝑠toMetSpDCnPLABF:X×YZz+w+xX×YABdisttoMetSpC×𝑠toMetSpDx<wFABEFx<z
14 4 5 6 1 2 11 tmsxpsmopn C∞MetXD∞MetYE∞MetZAXBYMetOpendisttoMetSpC×𝑠toMetSpD=J×tK
15 14 oveq1d C∞MetXD∞MetYE∞MetZAXBYMetOpendisttoMetSpC×𝑠toMetSpDCnPL=J×tKCnPL
16 15 fveq1d C∞MetXD∞MetYE∞MetZAXBYMetOpendisttoMetSpC×𝑠toMetSpDCnPLAB=J×tKCnPLAB
17 16 eleq2d C∞MetXD∞MetYE∞MetZAXBYFMetOpendisttoMetSpC×𝑠toMetSpDCnPLABFJ×tKCnPLAB
18 oveq2 x=uvABdisttoMetSpC×𝑠toMetSpDx=ABdisttoMetSpC×𝑠toMetSpDuv
19 18 breq1d x=uvABdisttoMetSpC×𝑠toMetSpDx<wABdisttoMetSpC×𝑠toMetSpDuv<w
20 df-ov AFB=FAB
21 20 oveq1i AFBEFx=FABEFx
22 fveq2 x=uvFx=Fuv
23 df-ov uFv=Fuv
24 22 23 eqtr4di x=uvFx=uFv
25 24 oveq2d x=uvAFBEFx=AFBEuFv
26 21 25 eqtr3id x=uvFABEFx=AFBEuFv
27 26 breq1d x=uvFABEFx<zAFBEuFv<z
28 19 27 imbi12d x=uvABdisttoMetSpC×𝑠toMetSpDx<wFABEFx<zABdisttoMetSpC×𝑠toMetSpDuv<wAFBEuFv<z
29 28 ralxp xX×YABdisttoMetSpC×𝑠toMetSpDx<wFABEFx<zuXvYABdisttoMetSpC×𝑠toMetSpDuv<wAFBEuFv<z
30 5 ad2antrr C∞MetXD∞MetYE∞MetZAXBYF:X×YZw+uXvYC∞MetX
31 6 ad2antrr C∞MetXD∞MetYE∞MetZAXBYF:X×YZw+uXvYD∞MetY
32 simpllr C∞MetXD∞MetYE∞MetZAXBYF:X×YZw+uXvYAXBY
33 32 simpld C∞MetXD∞MetYE∞MetZAXBYF:X×YZw+uXvYAX
34 32 simprd C∞MetXD∞MetYE∞MetZAXBYF:X×YZw+uXvYBY
35 simprrl C∞MetXD∞MetYE∞MetZAXBYF:X×YZw+uXvYuX
36 simprrr C∞MetXD∞MetYE∞MetZAXBYF:X×YZw+uXvYvY
37 4 30 31 33 34 35 36 tmsxpsval2 C∞MetXD∞MetYE∞MetZAXBYF:X×YZw+uXvYABdisttoMetSpC×𝑠toMetSpDuv=ifACuBDvBDvACu
38 37 breq1d C∞MetXD∞MetYE∞MetZAXBYF:X×YZw+uXvYABdisttoMetSpC×𝑠toMetSpDuv<wifACuBDvBDvACu<w
39 xmetcl C∞MetXAXuXACu*
40 30 33 35 39 syl3anc C∞MetXD∞MetYE∞MetZAXBYF:X×YZw+uXvYACu*
41 xmetcl D∞MetYBYvYBDv*
42 31 34 36 41 syl3anc C∞MetXD∞MetYE∞MetZAXBYF:X×YZw+uXvYBDv*
43 rpxr w+w*
44 43 ad2antrl C∞MetXD∞MetYE∞MetZAXBYF:X×YZw+uXvYw*
45 xrmaxlt ACu*BDv*w*ifACuBDvBDvACu<wACu<wBDv<w
46 40 42 44 45 syl3anc C∞MetXD∞MetYE∞MetZAXBYF:X×YZw+uXvYifACuBDvBDvACu<wACu<wBDv<w
47 38 46 bitrd C∞MetXD∞MetYE∞MetZAXBYF:X×YZw+uXvYABdisttoMetSpC×𝑠toMetSpDuv<wACu<wBDv<w
48 47 imbi1d C∞MetXD∞MetYE∞MetZAXBYF:X×YZw+uXvYABdisttoMetSpC×𝑠toMetSpDuv<wAFBEuFv<zACu<wBDv<wAFBEuFv<z
49 48 anassrs C∞MetXD∞MetYE∞MetZAXBYF:X×YZw+uXvYABdisttoMetSpC×𝑠toMetSpDuv<wAFBEuFv<zACu<wBDv<wAFBEuFv<z
50 49 2ralbidva C∞MetXD∞MetYE∞MetZAXBYF:X×YZw+uXvYABdisttoMetSpC×𝑠toMetSpDuv<wAFBEuFv<zuXvYACu<wBDv<wAFBEuFv<z
51 29 50 bitrid C∞MetXD∞MetYE∞MetZAXBYF:X×YZw+xX×YABdisttoMetSpC×𝑠toMetSpDx<wFABEFx<zuXvYACu<wBDv<wAFBEuFv<z
52 51 rexbidva C∞MetXD∞MetYE∞MetZAXBYF:X×YZw+xX×YABdisttoMetSpC×𝑠toMetSpDx<wFABEFx<zw+uXvYACu<wBDv<wAFBEuFv<z
53 52 ralbidv C∞MetXD∞MetYE∞MetZAXBYF:X×YZz+w+xX×YABdisttoMetSpC×𝑠toMetSpDx<wFABEFx<zz+w+uXvYACu<wBDv<wAFBEuFv<z
54 53 pm5.32da C∞MetXD∞MetYE∞MetZAXBYF:X×YZz+w+xX×YABdisttoMetSpC×𝑠toMetSpDx<wFABEFx<zF:X×YZz+w+uXvYACu<wBDv<wAFBEuFv<z
55 13 17 54 3bitr3d C∞MetXD∞MetYE∞MetZAXBYFJ×tKCnPLABF:X×YZz+w+uXvYACu<wBDv<wAFBEuFv<z