Metamath Proof Explorer


Theorem txmetcnp

Description: Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses metcn.2 J = MetOpen C
metcn.4 K = MetOpen D
txmetcnp.4 L = MetOpen E
Assertion txmetcnp C ∞Met X D ∞Met Y E ∞Met Z A X B Y F J × t K CnP L A B F : X × Y Z z + w + u X v Y A C u < w B D v < w A F B E u F v < z

Proof

Step Hyp Ref Expression
1 metcn.2 J = MetOpen C
2 metcn.4 K = MetOpen D
3 txmetcnp.4 L = MetOpen E
4 eqid dist toMetSp C × 𝑠 toMetSp D = dist toMetSp C × 𝑠 toMetSp D
5 simpl1 C ∞Met X D ∞Met Y E ∞Met Z A X B Y C ∞Met X
6 simpl2 C ∞Met X D ∞Met Y E ∞Met Z A X B Y D ∞Met Y
7 4 5 6 tmsxps C ∞Met X D ∞Met Y E ∞Met Z A X B Y dist toMetSp C × 𝑠 toMetSp D ∞Met X × Y
8 simpl3 C ∞Met X D ∞Met Y E ∞Met Z A X B Y E ∞Met Z
9 opelxpi A X B Y A B X × Y
10 9 adantl C ∞Met X D ∞Met Y E ∞Met Z A X B Y A B X × Y
11 eqid MetOpen dist toMetSp C × 𝑠 toMetSp D = MetOpen dist toMetSp C × 𝑠 toMetSp D
12 11 3 metcnp dist toMetSp C × 𝑠 toMetSp D ∞Met X × Y E ∞Met Z A B X × Y F MetOpen dist toMetSp C × 𝑠 toMetSp D CnP L A B F : X × Y Z z + w + x X × Y A B dist toMetSp C × 𝑠 toMetSp D x < w F A B E F x < z
13 7 8 10 12 syl3anc C ∞Met X D ∞Met Y E ∞Met Z A X B Y F MetOpen dist toMetSp C × 𝑠 toMetSp D CnP L A B F : X × Y Z z + w + x X × Y A B dist toMetSp C × 𝑠 toMetSp D x < w F A B E F x < z
14 4 5 6 1 2 11 tmsxpsmopn C ∞Met X D ∞Met Y E ∞Met Z A X B Y MetOpen dist toMetSp C × 𝑠 toMetSp D = J × t K
15 14 oveq1d C ∞Met X D ∞Met Y E ∞Met Z A X B Y MetOpen dist toMetSp C × 𝑠 toMetSp D CnP L = J × t K CnP L
16 15 fveq1d C ∞Met X D ∞Met Y E ∞Met Z A X B Y MetOpen dist toMetSp C × 𝑠 toMetSp D CnP L A B = J × t K CnP L A B
17 16 eleq2d C ∞Met X D ∞Met Y E ∞Met Z A X B Y F MetOpen dist toMetSp C × 𝑠 toMetSp D CnP L A B F J × t K CnP L A B
18 oveq2 x = u v A B dist toMetSp C × 𝑠 toMetSp D x = A B dist toMetSp C × 𝑠 toMetSp D u v
19 18 breq1d x = u v A B dist toMetSp C × 𝑠 toMetSp D x < w A B dist toMetSp C × 𝑠 toMetSp D u v < w
20 df-ov A F B = F A B
21 20 oveq1i A F B E F x = F A B E F x
22 fveq2 x = u v F x = F u v
23 df-ov u F v = F u v
24 22 23 eqtr4di x = u v F x = u F v
25 24 oveq2d x = u v A F B E F x = A F B E u F v
26 21 25 eqtr3id x = u v F A B E F x = A F B E u F v
27 26 breq1d x = u v F A B E F x < z A F B E u F v < z
28 19 27 imbi12d x = u v A B dist toMetSp C × 𝑠 toMetSp D x < w F A B E F x < z A B dist toMetSp C × 𝑠 toMetSp D u v < w A F B E u F v < z
29 28 ralxp x X × Y A B dist toMetSp C × 𝑠 toMetSp D x < w F A B E F x < z u X v Y A B dist toMetSp C × 𝑠 toMetSp D u v < w A F B E u F v < z
30 5 ad2antrr C ∞Met X D ∞Met Y E ∞Met Z A X B Y F : X × Y Z w + u X v Y C ∞Met X
31 6 ad2antrr C ∞Met X D ∞Met Y E ∞Met Z A X B Y F : X × Y Z w + u X v Y D ∞Met Y
32 simpllr C ∞Met X D ∞Met Y E ∞Met Z A X B Y F : X × Y Z w + u X v Y A X B Y
33 32 simpld C ∞Met X D ∞Met Y E ∞Met Z A X B Y F : X × Y Z w + u X v Y A X
34 32 simprd C ∞Met X D ∞Met Y E ∞Met Z A X B Y F : X × Y Z w + u X v Y B Y
35 simprrl C ∞Met X D ∞Met Y E ∞Met Z A X B Y F : X × Y Z w + u X v Y u X
36 simprrr C ∞Met X D ∞Met Y E ∞Met Z A X B Y F : X × Y Z w + u X v Y v Y
37 4 30 31 33 34 35 36 tmsxpsval2 C ∞Met X D ∞Met Y E ∞Met Z A X B Y F : X × Y Z w + u X v Y A B dist toMetSp C × 𝑠 toMetSp D u v = if A C u B D v B D v A C u
38 37 breq1d C ∞Met X D ∞Met Y E ∞Met Z A X B Y F : X × Y Z w + u X v Y A B dist toMetSp C × 𝑠 toMetSp D u v < w if A C u B D v B D v A C u < w
39 xmetcl C ∞Met X A X u X A C u *
40 30 33 35 39 syl3anc C ∞Met X D ∞Met Y E ∞Met Z A X B Y F : X × Y Z w + u X v Y A C u *
41 xmetcl D ∞Met Y B Y v Y B D v *
42 31 34 36 41 syl3anc C ∞Met X D ∞Met Y E ∞Met Z A X B Y F : X × Y Z w + u X v Y B D v *
43 rpxr w + w *
44 43 ad2antrl C ∞Met X D ∞Met Y E ∞Met Z A X B Y F : X × Y Z w + u X v Y w *
45 xrmaxlt A C u * B D v * w * if A C u B D v B D v A C u < w A C u < w B D v < w
46 40 42 44 45 syl3anc C ∞Met X D ∞Met Y E ∞Met Z A X B Y F : X × Y Z w + u X v Y if A C u B D v B D v A C u < w A C u < w B D v < w
47 38 46 bitrd C ∞Met X D ∞Met Y E ∞Met Z A X B Y F : X × Y Z w + u X v Y A B dist toMetSp C × 𝑠 toMetSp D u v < w A C u < w B D v < w
48 47 imbi1d C ∞Met X D ∞Met Y E ∞Met Z A X B Y F : X × Y Z w + u X v Y A B dist toMetSp C × 𝑠 toMetSp D u v < w A F B E u F v < z A C u < w B D v < w A F B E u F v < z
49 48 anassrs C ∞Met X D ∞Met Y E ∞Met Z A X B Y F : X × Y Z w + u X v Y A B dist toMetSp C × 𝑠 toMetSp D u v < w A F B E u F v < z A C u < w B D v < w A F B E u F v < z
50 49 2ralbidva C ∞Met X D ∞Met Y E ∞Met Z A X B Y F : X × Y Z w + u X v Y A B dist toMetSp C × 𝑠 toMetSp D u v < w A F B E u F v < z u X v Y A C u < w B D v < w A F B E u F v < z
51 29 50 syl5bb C ∞Met X D ∞Met Y E ∞Met Z A X B Y F : X × Y Z w + x X × Y A B dist toMetSp C × 𝑠 toMetSp D x < w F A B E F x < z u X v Y A C u < w B D v < w A F B E u F v < z
52 51 rexbidva C ∞Met X D ∞Met Y E ∞Met Z A X B Y F : X × Y Z w + x X × Y A B dist toMetSp C × 𝑠 toMetSp D x < w F A B E F x < z w + u X v Y A C u < w B D v < w A F B E u F v < z
53 52 ralbidv C ∞Met X D ∞Met Y E ∞Met Z A X B Y F : X × Y Z z + w + x X × Y A B dist toMetSp C × 𝑠 toMetSp D x < w F A B E F x < z z + w + u X v Y A C u < w B D v < w A F B E u F v < z
54 53 pm5.32da C ∞Met X D ∞Met Y E ∞Met Z A X B Y F : X × Y Z z + w + x X × Y A B dist toMetSp C × 𝑠 toMetSp D x < w F A B E F x < z F : X × Y Z z + w + u X v Y A C u < w B D v < w A F B E u F v < z
55 13 17 54 3bitr3d C ∞Met X D ∞Met Y E ∞Met Z A X B Y F J × t K CnP L A B F : X × Y Z z + w + u X v Y A C u < w B D v < w A F B E u F v < z