Metamath Proof Explorer


Theorem txnlly

Description: If the property A is preserved under topological products, then so is the property of being n-locally A . (Contributed by Mario Carneiro, 13-Apr-2015)

Ref Expression
Hypothesis txlly.1 jAkAj×tkA
Assertion txnlly RN-Locally A SN-Locally A R×tSN-Locally A

Proof

Step Hyp Ref Expression
1 txlly.1 jAkAj×tkA
2 nllytop RN-Locally A RTop
3 nllytop SN-Locally A STop
4 txtop RTopSTopR×tSTop
5 2 3 4 syl2an RN-Locally A SN-Locally A R×tSTop
6 eltx RN-Locally A SN-Locally A xR×tSyxuRvSyu×vu×vx
7 simpll RN-Locally A SN-Locally A uRvSyu×vu×vx RN-Locally A
8 simprll RN-Locally A SN-Locally A uRvSyu×vu×vx uR
9 simprrl RN-Locally A SN-Locally A uRvSyu×vu×vx yu×v
10 xp1st yu×v1styu
11 9 10 syl RN-Locally A SN-Locally A uRvSyu×vu×vx 1styu
12 nlly2i RN-Locally A uR 1styu a𝒫urR1styrraR𝑡aA
13 7 8 11 12 syl3anc RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫urR1styrraR𝑡aA
14 simplr RN-Locally A SN-Locally A uRvSyu×vu×vx SN-Locally A
15 simprlr RN-Locally A SN-Locally A uRvSyu×vu×vx vS
16 xp2nd yu×v2ndyv
17 9 16 syl RN-Locally A SN-Locally A uRvSyu×vu×vx 2ndyv
18 nlly2i SN-Locally A vS 2ndyv b𝒫vsS2ndyssbS𝑡bA
19 14 15 17 18 syl3anc RN-Locally A SN-Locally A uRvSyu×vu×vx b𝒫vsS2ndyssbS𝑡bA
20 reeanv a𝒫ub𝒫vrR1styrraR𝑡aAsS2ndyssbS𝑡bAa𝒫urR1styrraR𝑡aAb𝒫vsS2ndyssbS𝑡bA
21 reeanv rRsS1styrraR𝑡aA2ndyssbS𝑡bArR1styrraR𝑡aAsS2ndyssbS𝑡bA
22 5 ad3antrrr RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA R×tSTop
23 2 ad2antrr RN-Locally A SN-Locally A uRvSyu×vu×vx RTop
24 23 ad2antrr RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA RTop
25 14 3 syl RN-Locally A SN-Locally A uRvSyu×vu×vx STop
26 25 ad2antrr RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA STop
27 simprrl RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS rR
28 27 adantr RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA rR
29 simprrr RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS sS
30 29 adantr RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA sS
31 txopn RTopSToprRsSr×sR×tS
32 24 26 28 30 31 syl22anc RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA r×sR×tS
33 9 ad2antrr RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA yu×v
34 1st2nd2 yu×vy=1sty2ndy
35 33 34 syl RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA y=1sty2ndy
36 simprl1 RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA 1styr
37 simprr1 RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA 2ndys
38 36 37 opelxpd RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA 1sty2ndyr×s
39 35 38 eqeltrd RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA yr×s
40 opnneip R×tSTopr×sR×tSyr×sr×sneiR×tSy
41 22 32 39 40 syl3anc RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA r×sneiR×tSy
42 simprl2 RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA ra
43 simprr2 RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA sb
44 xpss12 rasbr×sa×b
45 42 43 44 syl2anc RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA r×sa×b
46 simprll RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS a𝒫u
47 46 adantr RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA a𝒫u
48 47 elpwid RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA au
49 8 ad2antrr RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA uR
50 elssuni uRuR
51 49 50 syl RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA uR
52 48 51 sstrd RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA aR
53 simprlr RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS b𝒫v
54 53 adantr RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA b𝒫v
55 54 elpwid RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA bv
56 15 ad2antrr RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA vS
57 elssuni vSvS
58 56 57 syl RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA vS
59 55 58 sstrd RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA bS
60 xpss12 aRbSa×bR×S
61 52 59 60 syl2anc RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA a×bR×S
62 eqid R=R
63 eqid S=S
64 62 63 txuni RTopSTopR×S=R×tS
65 24 26 64 syl2anc RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA R×S=R×tS
66 61 65 sseqtrd RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA a×bR×tS
67 eqid R×tS=R×tS
68 67 ssnei2 R×tSTopr×sneiR×tSyr×sa×ba×bR×tSa×bneiR×tSy
69 22 41 45 66 68 syl22anc RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA a×bneiR×tSy
70 xpss12 aubva×bu×v
71 48 55 70 syl2anc RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA a×bu×v
72 simprrr RN-Locally A SN-Locally A uRvSyu×vu×vx u×vx
73 72 ad2antrr RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA u×vx
74 71 73 sstrd RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA a×bx
75 vex xV
76 75 elpw2 a×b𝒫xa×bx
77 74 76 sylibr RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA a×b𝒫x
78 69 77 elind RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA a×bneiR×tSy𝒫x
79 txrest RTopSTopa𝒫ub𝒫vR×tS𝑡a×b=R𝑡a×tS𝑡b
80 24 26 47 54 79 syl22anc RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA R×tS𝑡a×b=R𝑡a×tS𝑡b
81 simprl3 RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA R𝑡aA
82 simprr3 RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA S𝑡bA
83 1 caovcl R𝑡aAS𝑡bAR𝑡a×tS𝑡bA
84 81 82 83 syl2anc RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA R𝑡a×tS𝑡bA
85 80 84 eqeltrd RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA R×tS𝑡a×bA
86 oveq2 z=a×bR×tS𝑡z=R×tS𝑡a×b
87 86 eleq1d z=a×bR×tS𝑡zAR×tS𝑡a×bA
88 87 rspcev a×bneiR×tSy𝒫xR×tS𝑡a×bAzneiR×tSy𝒫xR×tS𝑡zA
89 78 85 88 syl2anc RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bA zneiR×tSy𝒫xR×tS𝑡zA
90 89 ex RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrRsS 1styrraR𝑡aA2ndyssbS𝑡bAzneiR×tSy𝒫xR×tS𝑡zA
91 90 anassrs RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫v rRsS 1styrraR𝑡aA2ndyssbS𝑡bAzneiR×tSy𝒫xR×tS𝑡zA
92 91 rexlimdvva RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫v rRsS1styrraR𝑡aA2ndyssbS𝑡bAzneiR×tSy𝒫xR×tS𝑡zA
93 21 92 syl5bir RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫v rR1styrraR𝑡aAsS2ndyssbS𝑡bAzneiR×tSy𝒫xR×tS𝑡zA
94 93 rexlimdvva RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫ub𝒫vrR1styrraR𝑡aAsS2ndyssbS𝑡bAzneiR×tSy𝒫xR×tS𝑡zA
95 20 94 syl5bir RN-Locally A SN-Locally A uRvSyu×vu×vx a𝒫urR1styrraR𝑡aAb𝒫vsS2ndyssbS𝑡bAzneiR×tSy𝒫xR×tS𝑡zA
96 13 19 95 mp2and RN-Locally A SN-Locally A uRvSyu×vu×vx zneiR×tSy𝒫xR×tS𝑡zA
97 96 expr RN-Locally A SN-Locally A uRvS yu×vu×vxzneiR×tSy𝒫xR×tS𝑡zA
98 97 rexlimdvva RN-Locally A SN-Locally A uRvSyu×vu×vxzneiR×tSy𝒫xR×tS𝑡zA
99 98 ralimdv RN-Locally A SN-Locally A yxuRvSyu×vu×vxyxzneiR×tSy𝒫xR×tS𝑡zA
100 6 99 sylbid RN-Locally A SN-Locally A xR×tSyxzneiR×tSy𝒫xR×tS𝑡zA
101 100 ralrimiv RN-Locally A SN-Locally A xR×tSyxzneiR×tSy𝒫xR×tS𝑡zA
102 isnlly R×tSN-Locally A R×tSTopxR×tSyxzneiR×tSy𝒫xR×tS𝑡zA
103 5 101 102 sylanbrc RN-Locally A SN-Locally A R×tSN-Locally A