Metamath Proof Explorer


Theorem txnlly

Description: If the property A is preserved under topological products, then so is the property of being n-locally A . (Contributed by Mario Carneiro, 13-Apr-2015)

Ref Expression
Hypothesis txlly.1 j A k A j × t k A
Assertion txnlly R N-Locally A S N-Locally A R × t S N-Locally A

Proof

Step Hyp Ref Expression
1 txlly.1 j A k A j × t k A
2 nllytop R N-Locally A R Top
3 nllytop S N-Locally A S Top
4 txtop R Top S Top R × t S Top
5 2 3 4 syl2an R N-Locally A S N-Locally A R × t S Top
6 eltx R N-Locally A S N-Locally A x R × t S y x u R v S y u × v u × v x
7 simpll R N-Locally A S N-Locally A u R v S y u × v u × v x R N-Locally A
8 simprll R N-Locally A S N-Locally A u R v S y u × v u × v x u R
9 simprrl R N-Locally A S N-Locally A u R v S y u × v u × v x y u × v
10 xp1st y u × v 1 st y u
11 9 10 syl R N-Locally A S N-Locally A u R v S y u × v u × v x 1 st y u
12 nlly2i R N-Locally A u R 1 st y u a 𝒫 u r R 1 st y r r a R 𝑡 a A
13 7 8 11 12 syl3anc R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u r R 1 st y r r a R 𝑡 a A
14 simplr R N-Locally A S N-Locally A u R v S y u × v u × v x S N-Locally A
15 simprlr R N-Locally A S N-Locally A u R v S y u × v u × v x v S
16 xp2nd y u × v 2 nd y v
17 9 16 syl R N-Locally A S N-Locally A u R v S y u × v u × v x 2 nd y v
18 nlly2i S N-Locally A v S 2 nd y v b 𝒫 v s S 2 nd y s s b S 𝑡 b A
19 14 15 17 18 syl3anc R N-Locally A S N-Locally A u R v S y u × v u × v x b 𝒫 v s S 2 nd y s s b S 𝑡 b A
20 reeanv a 𝒫 u b 𝒫 v r R 1 st y r r a R 𝑡 a A s S 2 nd y s s b S 𝑡 b A a 𝒫 u r R 1 st y r r a R 𝑡 a A b 𝒫 v s S 2 nd y s s b S 𝑡 b A
21 reeanv r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A r R 1 st y r r a R 𝑡 a A s S 2 nd y s s b S 𝑡 b A
22 5 ad3antrrr R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A R × t S Top
23 2 ad2antrr R N-Locally A S N-Locally A u R v S y u × v u × v x R Top
24 23 ad2antrr R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A R Top
25 14 3 syl R N-Locally A S N-Locally A u R v S y u × v u × v x S Top
26 25 ad2antrr R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A S Top
27 simprrl R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S r R
28 27 adantr R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A r R
29 simprrr R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S s S
30 29 adantr R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A s S
31 txopn R Top S Top r R s S r × s R × t S
32 24 26 28 30 31 syl22anc R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A r × s R × t S
33 9 ad2antrr R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A y u × v
34 1st2nd2 y u × v y = 1 st y 2 nd y
35 33 34 syl R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A y = 1 st y 2 nd y
36 simprl1 R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A 1 st y r
37 simprr1 R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A 2 nd y s
38 36 37 opelxpd R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A 1 st y 2 nd y r × s
39 35 38 eqeltrd R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A y r × s
40 opnneip R × t S Top r × s R × t S y r × s r × s nei R × t S y
41 22 32 39 40 syl3anc R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A r × s nei R × t S y
42 simprl2 R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A r a
43 simprr2 R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A s b
44 xpss12 r a s b r × s a × b
45 42 43 44 syl2anc R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A r × s a × b
46 simprll R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S a 𝒫 u
47 46 adantr R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A a 𝒫 u
48 47 elpwid R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A a u
49 8 ad2antrr R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A u R
50 elssuni u R u R
51 49 50 syl R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A u R
52 48 51 sstrd R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A a R
53 simprlr R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S b 𝒫 v
54 53 adantr R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A b 𝒫 v
55 54 elpwid R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A b v
56 15 ad2antrr R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A v S
57 elssuni v S v S
58 56 57 syl R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A v S
59 55 58 sstrd R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A b S
60 xpss12 a R b S a × b R × S
61 52 59 60 syl2anc R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A a × b R × S
62 eqid R = R
63 eqid S = S
64 62 63 txuni R Top S Top R × S = R × t S
65 24 26 64 syl2anc R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A R × S = R × t S
66 61 65 sseqtrd R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A a × b R × t S
67 eqid R × t S = R × t S
68 67 ssnei2 R × t S Top r × s nei R × t S y r × s a × b a × b R × t S a × b nei R × t S y
69 22 41 45 66 68 syl22anc R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A a × b nei R × t S y
70 xpss12 a u b v a × b u × v
71 48 55 70 syl2anc R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A a × b u × v
72 simprrr R N-Locally A S N-Locally A u R v S y u × v u × v x u × v x
73 72 ad2antrr R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A u × v x
74 71 73 sstrd R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A a × b x
75 vex x V
76 75 elpw2 a × b 𝒫 x a × b x
77 74 76 sylibr R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A a × b 𝒫 x
78 69 77 elind R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A a × b nei R × t S y 𝒫 x
79 txrest R Top S Top a 𝒫 u b 𝒫 v R × t S 𝑡 a × b = R 𝑡 a × t S 𝑡 b
80 24 26 47 54 79 syl22anc R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A R × t S 𝑡 a × b = R 𝑡 a × t S 𝑡 b
81 simprl3 R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A R 𝑡 a A
82 simprr3 R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A S 𝑡 b A
83 1 caovcl R 𝑡 a A S 𝑡 b A R 𝑡 a × t S 𝑡 b A
84 81 82 83 syl2anc R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A R 𝑡 a × t S 𝑡 b A
85 80 84 eqeltrd R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A R × t S 𝑡 a × b A
86 oveq2 z = a × b R × t S 𝑡 z = R × t S 𝑡 a × b
87 86 eleq1d z = a × b R × t S 𝑡 z A R × t S 𝑡 a × b A
88 87 rspcev a × b nei R × t S y 𝒫 x R × t S 𝑡 a × b A z nei R × t S y 𝒫 x R × t S 𝑡 z A
89 78 85 88 syl2anc R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A z nei R × t S y 𝒫 x R × t S 𝑡 z A
90 89 ex R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A z nei R × t S y 𝒫 x R × t S 𝑡 z A
91 90 anassrs R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A z nei R × t S y 𝒫 x R × t S 𝑡 z A
92 91 rexlimdvva R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R s S 1 st y r r a R 𝑡 a A 2 nd y s s b S 𝑡 b A z nei R × t S y 𝒫 x R × t S 𝑡 z A
93 21 92 syl5bir R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R 1 st y r r a R 𝑡 a A s S 2 nd y s s b S 𝑡 b A z nei R × t S y 𝒫 x R × t S 𝑡 z A
94 93 rexlimdvva R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u b 𝒫 v r R 1 st y r r a R 𝑡 a A s S 2 nd y s s b S 𝑡 b A z nei R × t S y 𝒫 x R × t S 𝑡 z A
95 20 94 syl5bir R N-Locally A S N-Locally A u R v S y u × v u × v x a 𝒫 u r R 1 st y r r a R 𝑡 a A b 𝒫 v s S 2 nd y s s b S 𝑡 b A z nei R × t S y 𝒫 x R × t S 𝑡 z A
96 13 19 95 mp2and R N-Locally A S N-Locally A u R v S y u × v u × v x z nei R × t S y 𝒫 x R × t S 𝑡 z A
97 96 expr R N-Locally A S N-Locally A u R v S y u × v u × v x z nei R × t S y 𝒫 x R × t S 𝑡 z A
98 97 rexlimdvva R N-Locally A S N-Locally A u R v S y u × v u × v x z nei R × t S y 𝒫 x R × t S 𝑡 z A
99 98 ralimdv R N-Locally A S N-Locally A y x u R v S y u × v u × v x y x z nei R × t S y 𝒫 x R × t S 𝑡 z A
100 6 99 sylbid R N-Locally A S N-Locally A x R × t S y x z nei R × t S y 𝒫 x R × t S 𝑡 z A
101 100 ralrimiv R N-Locally A S N-Locally A x R × t S y x z nei R × t S y 𝒫 x R × t S 𝑡 z A
102 isnlly R × t S N-Locally A R × t S Top x R × t S y x z nei R × t S y 𝒫 x R × t S 𝑡 z A
103 5 101 102 sylanbrc R N-Locally A S N-Locally A R × t S N-Locally A