Metamath Proof Explorer


Theorem txopn

Description: The product of two open sets is open in the product topology. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion txopn R V S W A R B S A × B R × t S

Proof

Step Hyp Ref Expression
1 eqid ran u R , v S u × v = ran u R , v S u × v
2 1 txbasex R V S W ran u R , v S u × v V
3 bastg ran u R , v S u × v V ran u R , v S u × v topGen ran u R , v S u × v
4 2 3 syl R V S W ran u R , v S u × v topGen ran u R , v S u × v
5 4 adantr R V S W A R B S ran u R , v S u × v topGen ran u R , v S u × v
6 eqid A × B = A × B
7 xpeq1 u = A u × v = A × v
8 7 eqeq2d u = A A × B = u × v A × B = A × v
9 xpeq2 v = B A × v = A × B
10 9 eqeq2d v = B A × B = A × v A × B = A × B
11 8 10 rspc2ev A R B S A × B = A × B u R v S A × B = u × v
12 6 11 mp3an3 A R B S u R v S A × B = u × v
13 xpexg A R B S A × B V
14 eqid u R , v S u × v = u R , v S u × v
15 14 elrnmpog A × B V A × B ran u R , v S u × v u R v S A × B = u × v
16 13 15 syl A R B S A × B ran u R , v S u × v u R v S A × B = u × v
17 12 16 mpbird A R B S A × B ran u R , v S u × v
18 17 adantl R V S W A R B S A × B ran u R , v S u × v
19 5 18 sseldd R V S W A R B S A × B topGen ran u R , v S u × v
20 1 txval R V S W R × t S = topGen ran u R , v S u × v
21 20 adantr R V S W A R B S R × t S = topGen ran u R , v S u × v
22 19 21 eleqtrrd R V S W A R B S A × B R × t S