Metamath Proof Explorer


Theorem txtop

Description: The product of two topologies is a topology. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion txtop RTopSTopR×tSTop

Proof

Step Hyp Ref Expression
1 eqid ranuR,vSu×v=ranuR,vSu×v
2 1 txval RTopSTopR×tS=topGenranuR,vSu×v
3 topbas RTopRTopBases
4 topbas STopSTopBases
5 1 txbas RTopBasesSTopBasesranuR,vSu×vTopBases
6 3 4 5 syl2an RTopSTopranuR,vSu×vTopBases
7 tgcl ranuR,vSu×vTopBasestopGenranuR,vSu×vTop
8 6 7 syl RTopSToptopGenranuR,vSu×vTop
9 2 8 eqeltrd RTopSTopR×tSTop