Metamath Proof Explorer


Theorem txtop

Description: The product of two topologies is a topology. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion txtop R Top S Top R × t S Top

Proof

Step Hyp Ref Expression
1 eqid ran u R , v S u × v = ran u R , v S u × v
2 1 txval R Top S Top R × t S = topGen ran u R , v S u × v
3 topbas R Top R TopBases
4 topbas S Top S TopBases
5 1 txbas R TopBases S TopBases ran u R , v S u × v TopBases
6 3 4 5 syl2an R Top S Top ran u R , v S u × v TopBases
7 tgcl ran u R , v S u × v TopBases topGen ran u R , v S u × v Top
8 6 7 syl R Top S Top topGen ran u R , v S u × v Top
9 2 8 eqeltrd R Top S Top R × t S Top