Database
BASIC TOPOLOGY
Topology
Product topologies
txtop
Next ⟩
ptval
Metamath Proof Explorer
Ascii
Unicode
Theorem
txtop
Description:
The product of two topologies is a topology.
(Contributed by
Jeff Madsen
, 2-Sep-2009)
Ref
Expression
Assertion
txtop
⊢
R
∈
Top
∧
S
∈
Top
→
R
×
t
S
∈
Top
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
ran
⁡
u
∈
R
,
v
∈
S
⟼
u
×
v
=
ran
⁡
u
∈
R
,
v
∈
S
⟼
u
×
v
2
1
txval
⊢
R
∈
Top
∧
S
∈
Top
→
R
×
t
S
=
topGen
⁡
ran
⁡
u
∈
R
,
v
∈
S
⟼
u
×
v
3
topbas
⊢
R
∈
Top
→
R
∈
TopBases
4
topbas
⊢
S
∈
Top
→
S
∈
TopBases
5
1
txbas
⊢
R
∈
TopBases
∧
S
∈
TopBases
→
ran
⁡
u
∈
R
,
v
∈
S
⟼
u
×
v
∈
TopBases
6
3
4
5
syl2an
⊢
R
∈
Top
∧
S
∈
Top
→
ran
⁡
u
∈
R
,
v
∈
S
⟼
u
×
v
∈
TopBases
7
tgcl
⊢
ran
⁡
u
∈
R
,
v
∈
S
⟼
u
×
v
∈
TopBases
→
topGen
⁡
ran
⁡
u
∈
R
,
v
∈
S
⟼
u
×
v
∈
Top
8
6
7
syl
⊢
R
∈
Top
∧
S
∈
Top
→
topGen
⁡
ran
⁡
u
∈
R
,
v
∈
S
⟼
u
×
v
∈
Top
9
2
8
eqeltrd
⊢
R
∈
Top
∧
S
∈
Top
→
R
×
t
S
∈
Top