Metamath Proof Explorer


Theorem txtopi

Description: The product of two topologies is a topology. (Contributed by Jeff Madsen, 15-Jun-2010)

Ref Expression
Hypotheses txtopi.1 R Top
txtopi.2 S Top
Assertion txtopi R × t S Top

Proof

Step Hyp Ref Expression
1 txtopi.1 R Top
2 txtopi.2 S Top
3 txtop R Top S Top R × t S Top
4 1 2 3 mp2an R × t S Top