Metamath Proof Explorer


Theorem txtopon

Description: The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 22-Aug-2015) (Revised by Mario Carneiro, 2-Sep-2015)

Ref Expression
Assertion txtopon R TopOn X S TopOn Y R × t S TopOn X × Y

Proof

Step Hyp Ref Expression
1 topontop R TopOn X R Top
2 topontop S TopOn Y S Top
3 txtop R Top S Top R × t S Top
4 1 2 3 syl2an R TopOn X S TopOn Y R × t S Top
5 eqid ran u R , v S u × v = ran u R , v S u × v
6 eqid R = R
7 eqid S = S
8 5 6 7 txuni2 R × S = ran u R , v S u × v
9 toponuni R TopOn X X = R
10 toponuni S TopOn Y Y = S
11 xpeq12 X = R Y = S X × Y = R × S
12 9 10 11 syl2an R TopOn X S TopOn Y X × Y = R × S
13 5 txbasex R TopOn X S TopOn Y ran u R , v S u × v V
14 unitg ran u R , v S u × v V topGen ran u R , v S u × v = ran u R , v S u × v
15 13 14 syl R TopOn X S TopOn Y topGen ran u R , v S u × v = ran u R , v S u × v
16 8 12 15 3eqtr4a R TopOn X S TopOn Y X × Y = topGen ran u R , v S u × v
17 5 txval R TopOn X S TopOn Y R × t S = topGen ran u R , v S u × v
18 17 unieqd R TopOn X S TopOn Y R × t S = topGen ran u R , v S u × v
19 16 18 eqtr4d R TopOn X S TopOn Y X × Y = R × t S
20 istopon R × t S TopOn X × Y R × t S Top X × Y = R × t S
21 4 19 20 sylanbrc R TopOn X S TopOn Y R × t S TopOn X × Y