Metamath Proof Explorer


Theorem txuni

Description: The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses txuni.1 X = R
txuni.2 Y = S
Assertion txuni R Top S Top X × Y = R × t S

Proof

Step Hyp Ref Expression
1 txuni.1 X = R
2 txuni.2 Y = S
3 1 toptopon R Top R TopOn X
4 2 toptopon S Top S TopOn Y
5 txtopon R TopOn X S TopOn Y R × t S TopOn X × Y
6 3 4 5 syl2anb R Top S Top R × t S TopOn X × Y
7 toponuni R × t S TopOn X × Y X × Y = R × t S
8 6 7 syl R Top S Top X × Y = R × t S