Metamath Proof Explorer


Theorem txunii

Description: The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 15-Jun-2010)

Ref Expression
Hypotheses txunii.1 R Top
txunii.2 S Top
txunii.3 X = R
txunii.4 Y = S
Assertion txunii X × Y = R × t S

Proof

Step Hyp Ref Expression
1 txunii.1 R Top
2 txunii.2 S Top
3 txunii.3 X = R
4 txunii.4 Y = S
5 3 4 txuni R Top S Top X × Y = R × t S
6 1 2 5 mp2an X × Y = R × t S