Metamath Proof Explorer


Theorem txunii

Description: The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 15-Jun-2010)

Ref Expression
Hypotheses txunii.1 RTop
txunii.2 STop
txunii.3 X=R
txunii.4 Y=S
Assertion txunii X×Y=R×tS

Proof

Step Hyp Ref Expression
1 txunii.1 RTop
2 txunii.2 STop
3 txunii.3 X=R
4 txunii.4 Y=S
5 3 4 txuni RTopSTopX×Y=R×tS
6 1 2 5 mp2an X×Y=R×tS