Metamath Proof Explorer


Theorem tz6.12-2

Description: Function value when F is not a function. Theorem 6.12(2) of TakeutiZaring p. 27. (Contributed by NM, 30-Apr-2004) (Proof shortened by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion tz6.12-2 ¬ ∃! x A F x F A =

Proof

Step Hyp Ref Expression
1 df-fv F A = ι x | A F x
2 iotanul ¬ ∃! x A F x ι x | A F x =
3 1 2 eqtrid ¬ ∃! x A F x F A =