Metamath Proof Explorer


Theorem tz6.12i

Description: Corollary of Theorem 6.12(2) of TakeutiZaring p. 27. (Contributed by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion tz6.12i B F A = B A F B

Proof

Step Hyp Ref Expression
1 fvex F A V
2 neeq1 F A = y F A y
3 tz6.12-2 ¬ ∃! y A F y F A =
4 3 necon1ai F A ∃! y A F y
5 tz6.12c ∃! y A F y F A = y A F y
6 4 5 syl F A F A = y A F y
7 6 biimpcd F A = y F A A F y
8 2 7 sylbird F A = y y A F y
9 8 eqcoms y = F A y A F y
10 neeq1 y = F A y F A
11 breq2 y = F A A F y A F F A
12 9 10 11 3imtr3d y = F A F A A F F A
13 1 12 vtocle F A A F F A
14 13 a1i F A = B F A A F F A
15 neeq1 F A = B F A B
16 breq2 F A = B A F F A A F B
17 14 15 16 3imtr3d F A = B B A F B
18 17 com12 B F A = B A F B