Metamath Proof Explorer


Theorem tz7.44-2

Description: The value of F at a successor ordinal. Part 2 of Theorem 7.44 of TakeutiZaring p. 49. (Contributed by NM, 23-Apr-1995) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 19-Jun-2012) (Revised by Mario Carneiro, 14-Nov-2014)

Ref Expression
Hypotheses tz7.44.1 G = x V if x = A if Lim dom x ran x H x dom x
tz7.44.2 y X F y = G F y
tz7.44.3 y X F y V
tz7.44.4 F Fn X
tz7.44.5 Ord X
Assertion tz7.44-2 suc B X F suc B = H F B

Proof

Step Hyp Ref Expression
1 tz7.44.1 G = x V if x = A if Lim dom x ran x H x dom x
2 tz7.44.2 y X F y = G F y
3 tz7.44.3 y X F y V
4 tz7.44.4 F Fn X
5 tz7.44.5 Ord X
6 fveq2 y = suc B F y = F suc B
7 reseq2 y = suc B F y = F suc B
8 7 fveq2d y = suc B G F y = G F suc B
9 6 8 eqeq12d y = suc B F y = G F y F suc B = G F suc B
10 9 2 vtoclga suc B X F suc B = G F suc B
11 eqeq1 x = F suc B x = F suc B =
12 dmeq x = F suc B dom x = dom F suc B
13 limeq dom x = dom F suc B Lim dom x Lim dom F suc B
14 12 13 syl x = F suc B Lim dom x Lim dom F suc B
15 rneq x = F suc B ran x = ran F suc B
16 15 unieqd x = F suc B ran x = ran F suc B
17 fveq1 x = F suc B x dom x = F suc B dom x
18 12 unieqd x = F suc B dom x = dom F suc B
19 18 fveq2d x = F suc B F suc B dom x = F suc B dom F suc B
20 17 19 eqtrd x = F suc B x dom x = F suc B dom F suc B
21 20 fveq2d x = F suc B H x dom x = H F suc B dom F suc B
22 14 16 21 ifbieq12d x = F suc B if Lim dom x ran x H x dom x = if Lim dom F suc B ran F suc B H F suc B dom F suc B
23 11 22 ifbieq2d x = F suc B if x = A if Lim dom x ran x H x dom x = if F suc B = A if Lim dom F suc B ran F suc B H F suc B dom F suc B
24 7 eleq1d y = suc B F y V F suc B V
25 24 3 vtoclga suc B X F suc B V
26 noel ¬ B
27 dmeq F suc B = dom F suc B = dom
28 dm0 dom =
29 27 28 eqtrdi F suc B = dom F suc B =
30 ordsson Ord X X On
31 5 30 ax-mp X On
32 ordtr Ord X Tr X
33 5 32 ax-mp Tr X
34 trsuc Tr X suc B X B X
35 33 34 mpan suc B X B X
36 31 35 sselid suc B X B On
37 sucidg B On B suc B
38 36 37 syl suc B X B suc B
39 dmres dom F suc B = suc B dom F
40 ordelss Ord X suc B X suc B X
41 5 40 mpan suc B X suc B X
42 4 fndmi dom F = X
43 41 42 sseqtrrdi suc B X suc B dom F
44 df-ss suc B dom F suc B dom F = suc B
45 43 44 sylib suc B X suc B dom F = suc B
46 39 45 eqtrid suc B X dom F suc B = suc B
47 38 46 eleqtrrd suc B X B dom F suc B
48 eleq2 dom F suc B = B dom F suc B B
49 47 48 syl5ibcom suc B X dom F suc B = B
50 29 49 syl5 suc B X F suc B = B
51 26 50 mtoi suc B X ¬ F suc B =
52 51 iffalsed suc B X if F suc B = A if Lim dom F suc B ran F suc B H F suc B dom F suc B = if Lim dom F suc B ran F suc B H F suc B dom F suc B
53 nlimsucg B On ¬ Lim suc B
54 36 53 syl suc B X ¬ Lim suc B
55 limeq dom F suc B = suc B Lim dom F suc B Lim suc B
56 46 55 syl suc B X Lim dom F suc B Lim suc B
57 54 56 mtbird suc B X ¬ Lim dom F suc B
58 57 iffalsed suc B X if Lim dom F suc B ran F suc B H F suc B dom F suc B = H F suc B dom F suc B
59 46 unieqd suc B X dom F suc B = suc B
60 eloni B On Ord B
61 ordunisuc Ord B suc B = B
62 36 60 61 3syl suc B X suc B = B
63 59 62 eqtrd suc B X dom F suc B = B
64 63 fveq2d suc B X F suc B dom F suc B = F suc B B
65 38 fvresd suc B X F suc B B = F B
66 64 65 eqtrd suc B X F suc B dom F suc B = F B
67 66 fveq2d suc B X H F suc B dom F suc B = H F B
68 52 58 67 3eqtrd suc B X if F suc B = A if Lim dom F suc B ran F suc B H F suc B dom F suc B = H F B
69 fvex H F B V
70 68 69 eqeltrdi suc B X if F suc B = A if Lim dom F suc B ran F suc B H F suc B dom F suc B V
71 1 23 25 70 fvmptd3 suc B X G F suc B = if F suc B = A if Lim dom F suc B ran F suc B H F suc B dom F suc B
72 10 71 68 3eqtrd suc B X F suc B = H F B