Metamath Proof Explorer


Theorem tz7.48-1

Description: Proposition 7.48(1) of TakeutiZaring p. 51. (Contributed by NM, 9-Feb-1997)

Ref Expression
Hypothesis tz7.48.1 F Fn On
Assertion tz7.48-1 x On F x A F x ran F A

Proof

Step Hyp Ref Expression
1 tz7.48.1 F Fn On
2 vex y V
3 2 elrn2 y ran F x x y F
4 vex x V
5 4 2 opeldm x y F x dom F
6 1 fndmi dom F = On
7 5 6 eleqtrdi x y F x On
8 7 ancri x y F x On x y F
9 fnopfvb F Fn On x On F x = y x y F
10 1 9 mpan x On F x = y x y F
11 10 pm5.32i x On F x = y x On x y F
12 8 11 sylibr x y F x On F x = y
13 12 eximi x x y F x x On F x = y
14 3 13 sylbi y ran F x x On F x = y
15 nfra1 x x On F x A F x
16 nfv x y A
17 rsp x On F x A F x x On F x A F x
18 eldifi F x A F x F x A
19 eleq1 F x = y F x A y A
20 18 19 syl5ibcom F x A F x F x = y y A
21 20 imim2i x On F x A F x x On F x = y y A
22 21 impd x On F x A F x x On F x = y y A
23 17 22 syl x On F x A F x x On F x = y y A
24 15 16 23 exlimd x On F x A F x x x On F x = y y A
25 14 24 syl5 x On F x A F x y ran F y A
26 25 ssrdv x On F x A F x ran F A