Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Finite recursion
tz7.48-3
Next ⟩
tz7.49
Metamath Proof Explorer
Ascii
Unicode
Theorem
tz7.48-3
Description:
Proposition 7.48(3) of
TakeutiZaring
p. 51.
(Contributed by
NM
, 9-Feb-1997)
Ref
Expression
Hypothesis
tz7.48.1
⊢
F
Fn
On
Assertion
tz7.48-3
⊢
∀
x
∈
On
F
⁡
x
∈
A
∖
F
x
→
¬
A
∈
V
Proof
Step
Hyp
Ref
Expression
1
tz7.48.1
⊢
F
Fn
On
2
1
fndmi
⊢
dom
⁡
F
=
On
3
onprc
⊢
¬
On
∈
V
4
2
3
eqneltri
⊢
¬
dom
⁡
F
∈
V
5
1
tz7.48-2
⊢
∀
x
∈
On
F
⁡
x
∈
A
∖
F
x
→
Fun
⁡
F
-1
6
funrnex
⊢
dom
⁡
F
-1
∈
V
→
Fun
⁡
F
-1
→
ran
⁡
F
-1
∈
V
7
6
com12
⊢
Fun
⁡
F
-1
→
dom
⁡
F
-1
∈
V
→
ran
⁡
F
-1
∈
V
8
df-rn
⊢
ran
⁡
F
=
dom
⁡
F
-1
9
8
eleq1i
⊢
ran
⁡
F
∈
V
↔
dom
⁡
F
-1
∈
V
10
dfdm4
⊢
dom
⁡
F
=
ran
⁡
F
-1
11
10
eleq1i
⊢
dom
⁡
F
∈
V
↔
ran
⁡
F
-1
∈
V
12
7
9
11
3imtr4g
⊢
Fun
⁡
F
-1
→
ran
⁡
F
∈
V
→
dom
⁡
F
∈
V
13
5
12
syl
⊢
∀
x
∈
On
F
⁡
x
∈
A
∖
F
x
→
ran
⁡
F
∈
V
→
dom
⁡
F
∈
V
14
4
13
mtoi
⊢
∀
x
∈
On
F
⁡
x
∈
A
∖
F
x
→
¬
ran
⁡
F
∈
V
15
1
tz7.48-1
⊢
∀
x
∈
On
F
⁡
x
∈
A
∖
F
x
→
ran
⁡
F
⊆
A
16
ssexg
⊢
ran
⁡
F
⊆
A
∧
A
∈
V
→
ran
⁡
F
∈
V
17
16
ex
⊢
ran
⁡
F
⊆
A
→
A
∈
V
→
ran
⁡
F
∈
V
18
15
17
syl
⊢
∀
x
∈
On
F
⁡
x
∈
A
∖
F
x
→
A
∈
V
→
ran
⁡
F
∈
V
19
14
18
mtod
⊢
∀
x
∈
On
F
⁡
x
∈
A
∖
F
x
→
¬
A
∈
V