Metamath Proof Explorer


Theorem tz7.48-3

Description: Proposition 7.48(3) of TakeutiZaring p. 51. (Contributed by NM, 9-Feb-1997)

Ref Expression
Hypothesis tz7.48.1 F Fn On
Assertion tz7.48-3 x On F x A F x ¬ A V

Proof

Step Hyp Ref Expression
1 tz7.48.1 F Fn On
2 1 fndmi dom F = On
3 onprc ¬ On V
4 2 3 eqneltri ¬ dom F V
5 1 tz7.48-2 x On F x A F x Fun F -1
6 funrnex dom F -1 V Fun F -1 ran F -1 V
7 6 com12 Fun F -1 dom F -1 V ran F -1 V
8 df-rn ran F = dom F -1
9 8 eleq1i ran F V dom F -1 V
10 dfdm4 dom F = ran F -1
11 10 eleq1i dom F V ran F -1 V
12 7 9 11 3imtr4g Fun F -1 ran F V dom F V
13 5 12 syl x On F x A F x ran F V dom F V
14 4 13 mtoi x On F x A F x ¬ ran F V
15 1 tz7.48-1 x On F x A F x ran F A
16 ssexg ran F A A V ran F V
17 16 ex ran F A A V ran F V
18 15 17 syl x On F x A F x A V ran F V
19 14 18 mtod x On F x A F x ¬ A V