Metamath Proof Explorer


Theorem tz7.5

Description: A nonempty subclass of an ordinal class has a minimal element. Proposition 7.5 of TakeutiZaring p. 36. (Contributed by NM, 18-Feb-2004) (Revised by David Abernethy, 16-Mar-2011)

Ref Expression
Assertion tz7.5 Ord A B A B x B B x =

Proof

Step Hyp Ref Expression
1 ordwe Ord A E We A
2 wefrc E We A B A B x B B x =
3 1 2 syl3an1 Ord A B A B x B B x =