Metamath Proof Explorer


Theorem tz9.12

Description: A set is well-founded if all of its elements are well-founded. Proposition 9.12 of TakeutiZaring p. 78. The main proof consists of tz9.12lem1 through tz9.12lem3 . (Contributed by NM, 22-Sep-2003)

Ref Expression
Hypothesis tz9.12.1 A V
Assertion tz9.12 x A y On x R1 y y On A R1 y

Proof

Step Hyp Ref Expression
1 tz9.12.1 A V
2 eqid z V v On | z R1 v = z V v On | z R1 v
3 1 2 tz9.12lem2 suc z V v On | z R1 v A On
4 3 onsuci suc suc z V v On | z R1 v A On
5 1 2 tz9.12lem3 x A y On x R1 y A R1 suc suc z V v On | z R1 v A
6 fveq2 y = suc suc z V v On | z R1 v A R1 y = R1 suc suc z V v On | z R1 v A
7 6 eleq2d y = suc suc z V v On | z R1 v A A R1 y A R1 suc suc z V v On | z R1 v A
8 7 rspcev suc suc z V v On | z R1 v A On A R1 suc suc z V v On | z R1 v A y On A R1 y
9 4 5 8 sylancr x A y On x R1 y y On A R1 y