Metamath Proof Explorer


Theorem tz9.12lem1

Description: Lemma for tz9.12 . (Contributed by NM, 22-Sep-2003) (Revised by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypotheses tz9.12lem.1 A V
tz9.12lem.2 F = z V v On | z R1 v
Assertion tz9.12lem1 F A On

Proof

Step Hyp Ref Expression
1 tz9.12lem.1 A V
2 tz9.12lem.2 F = z V v On | z R1 v
3 imassrn F A ran F
4 2 rnmpt ran F = x | z V x = v On | z R1 v
5 id x = v On | z R1 v x = v On | z R1 v
6 ssrab2 v On | z R1 v On
7 eqvisset x = v On | z R1 v v On | z R1 v V
8 intex v On | z R1 v v On | z R1 v V
9 7 8 sylibr x = v On | z R1 v v On | z R1 v
10 oninton v On | z R1 v On v On | z R1 v v On | z R1 v On
11 6 9 10 sylancr x = v On | z R1 v v On | z R1 v On
12 5 11 eqeltrd x = v On | z R1 v x On
13 12 rexlimivw z V x = v On | z R1 v x On
14 13 abssi x | z V x = v On | z R1 v On
15 4 14 eqsstri ran F On
16 3 15 sstri F A On