Metamath Proof Explorer


Theorem tz9.12lem2

Description: Lemma for tz9.12 . (Contributed by NM, 22-Sep-2003)

Ref Expression
Hypotheses tz9.12lem.1 A V
tz9.12lem.2 F = z V v On | z R1 v
Assertion tz9.12lem2 suc F A On

Proof

Step Hyp Ref Expression
1 tz9.12lem.1 A V
2 tz9.12lem.2 F = z V v On | z R1 v
3 1 2 tz9.12lem1 F A On
4 2 funmpt2 Fun F
5 1 funimaex Fun F F A V
6 4 5 ax-mp F A V
7 6 ssonunii F A On F A On
8 3 7 ax-mp F A On
9 8 onsuci suc F A On