Metamath Proof Explorer


Theorem tz9.12lem3

Description: Lemma for tz9.12 . (Contributed by NM, 22-Sep-2003) (Revised by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypotheses tz9.12lem.1 A V
tz9.12lem.2 F = z V v On | z R1 v
Assertion tz9.12lem3 x A y On x R1 y A R1 suc suc F A

Proof

Step Hyp Ref Expression
1 tz9.12lem.1 A V
2 tz9.12lem.2 F = z V v On | z R1 v
3 2 funmpt2 Fun F
4 fveq2 v = y R1 v = R1 y
5 4 eleq2d v = y x R1 v x R1 y
6 5 rspcev y On x R1 y v On x R1 v
7 rabn0 v On | x R1 v v On x R1 v
8 6 7 sylibr y On x R1 y v On | x R1 v
9 intex v On | x R1 v v On | x R1 v V
10 8 9 sylib y On x R1 y v On | x R1 v V
11 vex x V
12 eleq1w z = x z R1 v x R1 v
13 12 rabbidv z = x v On | z R1 v = v On | x R1 v
14 13 inteqd z = x v On | z R1 v = v On | x R1 v
15 14 eleq1d z = x v On | z R1 v V v On | x R1 v V
16 2 dmmpt dom F = z V | v On | z R1 v V
17 15 16 elrab2 x dom F x V v On | x R1 v V
18 11 17 mpbiran x dom F v On | x R1 v V
19 10 18 sylibr y On x R1 y x dom F
20 funfvima Fun F x dom F x A F x F A
21 3 19 20 sylancr y On x R1 y x A F x F A
22 1 2 tz9.12lem2 suc F A On
23 1 2 tz9.12lem1 F A On
24 onsucuni F A On F A suc F A
25 23 24 ax-mp F A suc F A
26 25 sseli F x F A F x suc F A
27 r1ord2 suc F A On F x suc F A R1 F x R1 suc F A
28 22 26 27 mpsyl F x F A R1 F x R1 suc F A
29 21 28 syl6 y On x R1 y x A R1 F x R1 suc F A
30 29 imp y On x R1 y x A R1 F x R1 suc F A
31 14 2 fvmptg x V v On | x R1 v V F x = v On | x R1 v
32 11 31 mpan v On | x R1 v V F x = v On | x R1 v
33 9 32 sylbi v On | x R1 v F x = v On | x R1 v
34 ssrab2 v On | x R1 v On
35 onint v On | x R1 v On v On | x R1 v v On | x R1 v v On | x R1 v
36 34 35 mpan v On | x R1 v v On | x R1 v v On | x R1 v
37 33 36 eqeltrd v On | x R1 v F x v On | x R1 v
38 fveq2 y = F x R1 y = R1 F x
39 38 eleq2d y = F x x R1 y x R1 F x
40 5 cbvrabv v On | x R1 v = y On | x R1 y
41 39 40 elrab2 F x v On | x R1 v F x On x R1 F x
42 41 simprbi F x v On | x R1 v x R1 F x
43 8 37 42 3syl y On x R1 y x R1 F x
44 43 adantr y On x R1 y x A x R1 F x
45 30 44 sseldd y On x R1 y x A x R1 suc F A
46 45 exp31 y On x R1 y x A x R1 suc F A
47 46 com3r x A y On x R1 y x R1 suc F A
48 47 rexlimdv x A y On x R1 y x R1 suc F A
49 48 ralimia x A y On x R1 y x A x R1 suc F A
50 r1suc suc F A On R1 suc suc F A = 𝒫 R1 suc F A
51 22 50 ax-mp R1 suc suc F A = 𝒫 R1 suc F A
52 51 eleq2i A R1 suc suc F A A 𝒫 R1 suc F A
53 1 elpw A 𝒫 R1 suc F A A R1 suc F A
54 dfss3 A R1 suc F A x A x R1 suc F A
55 52 53 54 3bitri A R1 suc suc F A x A x R1 suc F A
56 49 55 sylibr x A y On x R1 y A R1 suc suc F A