Metamath Proof Explorer


Theorem tz9.13

Description: Every set is well-founded, assuming the Axiom of Regularity. In other words, every set belongs to a layer of the cumulative hierarchy of sets. Proposition 9.13 of TakeutiZaring p. 78. (Contributed by NM, 23-Sep-2003)

Ref Expression
Hypothesis tz9.13.1 A V
Assertion tz9.13 x On A R1 x

Proof

Step Hyp Ref Expression
1 tz9.13.1 A V
2 setind z z y | x On y R1 x z y | x On y R1 x y | x On y R1 x = V
3 ssel z y | x On y R1 x w z w y | x On y R1 x
4 vex w V
5 eleq1 y = w y R1 x w R1 x
6 5 rexbidv y = w x On y R1 x x On w R1 x
7 4 6 elab w y | x On y R1 x x On w R1 x
8 3 7 syl6ib z y | x On y R1 x w z x On w R1 x
9 8 ralrimiv z y | x On y R1 x w z x On w R1 x
10 vex z V
11 10 tz9.12 w z x On w R1 x x On z R1 x
12 9 11 syl z y | x On y R1 x x On z R1 x
13 eleq1 y = z y R1 x z R1 x
14 13 rexbidv y = z x On y R1 x x On z R1 x
15 10 14 elab z y | x On y R1 x x On z R1 x
16 12 15 sylibr z y | x On y R1 x z y | x On y R1 x
17 2 16 mpg y | x On y R1 x = V
18 1 17 eleqtrri A y | x On y R1 x
19 eleq1 y = A y R1 x A R1 x
20 19 rexbidv y = A x On y R1 x x On A R1 x
21 1 20 elab A y | x On y R1 x x On A R1 x
22 18 21 mpbi x On A R1 x