Description: If U belongs to A and U is an upper bound, then U is the sup of A. (Contributed by Glauco Siliprandi, 20-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ubelsupr | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |
|
| 2 | simp2 | |
|
| 3 | 2 | ne0d | |
| 4 | 1 2 | sseldd | |
| 5 | simp3 | |
|
| 6 | brralrspcev | |
|
| 7 | 4 5 6 | syl2anc | |
| 8 | 1 3 7 | 3jca | |
| 9 | suprub | |
|
| 10 | 8 2 9 | syl2anc | |
| 11 | suprleub | |
|
| 12 | 8 4 11 | syl2anc | |
| 13 | 5 12 | mpbird | |
| 14 | suprcl | |
|
| 15 | 8 14 | syl | |
| 16 | 4 15 | letri3d | |
| 17 | 10 13 16 | mpbir2and | |