Metamath Proof Explorer


Theorem ubmelfzo

Description: If an integer in a 1-based finite set of sequential integers is subtracted from the upper bound of this finite set of sequential integers, the result is contained in a half-open range of nonnegative integers with the same upper bound. (Contributed by AV, 18-Mar-2018) (Revised by AV, 30-Oct-2018)

Ref Expression
Assertion ubmelfzo K 1 N N K 0 ..^ N

Proof

Step Hyp Ref Expression
1 simp3 K N K N K N
2 nnnn0 K K 0
3 nnnn0 N N 0
4 2 3 anim12i K N K 0 N 0
5 4 3adant3 K N K N K 0 N 0
6 nn0sub K 0 N 0 K N N K 0
7 5 6 syl K N K N K N N K 0
8 1 7 mpbid K N K N N K 0
9 simp2 K N K N N
10 nngt0 K 0 < K
11 10 3ad2ant1 K N K N 0 < K
12 nnre K K
13 nnre N N
14 12 13 anim12i K N K N
15 14 3adant3 K N K N K N
16 ltsubpos K N 0 < K N K < N
17 15 16 syl K N K N 0 < K N K < N
18 11 17 mpbid K N K N N K < N
19 8 9 18 3jca K N K N N K 0 N N K < N
20 elfz1b K 1 N K N K N
21 elfzo0 N K 0 ..^ N N K 0 N N K < N
22 19 20 21 3imtr4i K 1 N N K 0 ..^ N