Metamath Proof Explorer


Theorem uc1pcl

Description: Unitic polynomials are polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses uc1pcl.p P = Poly 1 R
uc1pcl.b B = Base P
uc1pcl.c C = Unic 1p R
Assertion uc1pcl F C F B

Proof

Step Hyp Ref Expression
1 uc1pcl.p P = Poly 1 R
2 uc1pcl.b B = Base P
3 uc1pcl.c C = Unic 1p R
4 eqid 0 P = 0 P
5 eqid deg 1 R = deg 1 R
6 eqid Unit R = Unit R
7 1 2 4 5 3 6 isuc1p F C F B F 0 P coe 1 F deg 1 R F Unit R
8 7 simp1bi F C F B