Metamath Proof Explorer


Theorem uc1pdeg

Description: Unitic polynomials have nonnegative degrees. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses uc1pdeg.d D = deg 1 R
uc1pdeg.c C = Unic 1p R
Assertion uc1pdeg R Ring F C D F 0

Proof

Step Hyp Ref Expression
1 uc1pdeg.d D = deg 1 R
2 uc1pdeg.c C = Unic 1p R
3 simpl R Ring F C R Ring
4 eqid Poly 1 R = Poly 1 R
5 eqid Base Poly 1 R = Base Poly 1 R
6 4 5 2 uc1pcl F C F Base Poly 1 R
7 6 adantl R Ring F C F Base Poly 1 R
8 eqid 0 Poly 1 R = 0 Poly 1 R
9 4 8 2 uc1pn0 F C F 0 Poly 1 R
10 9 adantl R Ring F C F 0 Poly 1 R
11 1 4 8 5 deg1nn0cl R Ring F Base Poly 1 R F 0 Poly 1 R D F 0
12 3 7 10 11 syl3anc R Ring F C D F 0