Metamath Proof Explorer


Theorem uc1pmon1p

Description: Make a unitic polynomial monic by multiplying a factor to normalize the leading coefficient. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypotheses uc1pmon1p.c C = Unic 1p R
uc1pmon1p.m M = Monic 1p R
uc1pmon1p.p P = Poly 1 R
uc1pmon1p.t · ˙ = P
uc1pmon1p.a A = algSc P
uc1pmon1p.d D = deg 1 R
uc1pmon1p.i I = inv r R
Assertion uc1pmon1p R Ring X C A I coe 1 X D X · ˙ X M

Proof

Step Hyp Ref Expression
1 uc1pmon1p.c C = Unic 1p R
2 uc1pmon1p.m M = Monic 1p R
3 uc1pmon1p.p P = Poly 1 R
4 uc1pmon1p.t · ˙ = P
5 uc1pmon1p.a A = algSc P
6 uc1pmon1p.d D = deg 1 R
7 uc1pmon1p.i I = inv r R
8 3 ply1ring R Ring P Ring
9 8 adantr R Ring X C P Ring
10 eqid Base R = Base R
11 eqid Base P = Base P
12 3 5 10 11 ply1sclf R Ring A : Base R Base P
13 12 adantr R Ring X C A : Base R Base P
14 eqid Unit R = Unit R
15 6 14 1 uc1pldg X C coe 1 X D X Unit R
16 14 7 10 ringinvcl R Ring coe 1 X D X Unit R I coe 1 X D X Base R
17 15 16 sylan2 R Ring X C I coe 1 X D X Base R
18 13 17 ffvelrnd R Ring X C A I coe 1 X D X Base P
19 3 11 1 uc1pcl X C X Base P
20 19 adantl R Ring X C X Base P
21 11 4 ringcl P Ring A I coe 1 X D X Base P X Base P A I coe 1 X D X · ˙ X Base P
22 9 18 20 21 syl3anc R Ring X C A I coe 1 X D X · ˙ X Base P
23 simpl R Ring X C R Ring
24 eqid RLReg R = RLReg R
25 24 14 unitrrg R Ring Unit R RLReg R
26 25 adantr R Ring X C Unit R RLReg R
27 14 7 unitinvcl R Ring coe 1 X D X Unit R I coe 1 X D X Unit R
28 15 27 sylan2 R Ring X C I coe 1 X D X Unit R
29 26 28 sseldd R Ring X C I coe 1 X D X RLReg R
30 6 3 24 11 4 5 deg1mul3 R Ring I coe 1 X D X RLReg R X Base P D A I coe 1 X D X · ˙ X = D X
31 23 29 20 30 syl3anc R Ring X C D A I coe 1 X D X · ˙ X = D X
32 6 1 uc1pdeg R Ring X C D X 0
33 31 32 eqeltrd R Ring X C D A I coe 1 X D X · ˙ X 0
34 eqid 0 P = 0 P
35 6 3 34 11 deg1nn0clb R Ring A I coe 1 X D X · ˙ X Base P A I coe 1 X D X · ˙ X 0 P D A I coe 1 X D X · ˙ X 0
36 22 35 syldan R Ring X C A I coe 1 X D X · ˙ X 0 P D A I coe 1 X D X · ˙ X 0
37 33 36 mpbird R Ring X C A I coe 1 X D X · ˙ X 0 P
38 31 fveq2d R Ring X C coe 1 A I coe 1 X D X · ˙ X D A I coe 1 X D X · ˙ X = coe 1 A I coe 1 X D X · ˙ X D X
39 eqid R = R
40 3 11 10 5 4 39 coe1sclmul R Ring I coe 1 X D X Base R X Base P coe 1 A I coe 1 X D X · ˙ X = 0 × I coe 1 X D X R f coe 1 X
41 23 17 20 40 syl3anc R Ring X C coe 1 A I coe 1 X D X · ˙ X = 0 × I coe 1 X D X R f coe 1 X
42 41 fveq1d R Ring X C coe 1 A I coe 1 X D X · ˙ X D X = 0 × I coe 1 X D X R f coe 1 X D X
43 nn0ex 0 V
44 43 a1i R Ring X C 0 V
45 fvexd R Ring X C I coe 1 X D X V
46 eqid coe 1 X = coe 1 X
47 46 11 3 10 coe1f X Base P coe 1 X : 0 Base R
48 ffn coe 1 X : 0 Base R coe 1 X Fn 0
49 20 47 48 3syl R Ring X C coe 1 X Fn 0
50 eqidd R Ring X C D X 0 coe 1 X D X = coe 1 X D X
51 44 45 49 50 ofc1 R Ring X C D X 0 0 × I coe 1 X D X R f coe 1 X D X = I coe 1 X D X R coe 1 X D X
52 32 51 mpdan R Ring X C 0 × I coe 1 X D X R f coe 1 X D X = I coe 1 X D X R coe 1 X D X
53 eqid 1 R = 1 R
54 14 7 39 53 unitlinv R Ring coe 1 X D X Unit R I coe 1 X D X R coe 1 X D X = 1 R
55 15 54 sylan2 R Ring X C I coe 1 X D X R coe 1 X D X = 1 R
56 52 55 eqtrd R Ring X C 0 × I coe 1 X D X R f coe 1 X D X = 1 R
57 38 42 56 3eqtrd R Ring X C coe 1 A I coe 1 X D X · ˙ X D A I coe 1 X D X · ˙ X = 1 R
58 3 11 34 6 2 53 ismon1p A I coe 1 X D X · ˙ X M A I coe 1 X D X · ˙ X Base P A I coe 1 X D X · ˙ X 0 P coe 1 A I coe 1 X D X · ˙ X D A I coe 1 X D X · ˙ X = 1 R
59 22 37 57 58 syl3anbrc R Ring X C A I coe 1 X D X · ˙ X M