Step |
Hyp |
Ref |
Expression |
1 |
|
uc1pmon1p.c |
|
2 |
|
uc1pmon1p.m |
|
3 |
|
uc1pmon1p.p |
|
4 |
|
uc1pmon1p.t |
|
5 |
|
uc1pmon1p.a |
|
6 |
|
uc1pmon1p.d |
|
7 |
|
uc1pmon1p.i |
|
8 |
3
|
ply1ring |
|
9 |
8
|
adantr |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
3 5 10 11
|
ply1sclf |
|
13 |
12
|
adantr |
|
14 |
|
eqid |
|
15 |
6 14 1
|
uc1pldg |
|
16 |
14 7 10
|
ringinvcl |
|
17 |
15 16
|
sylan2 |
|
18 |
13 17
|
ffvelrnd |
|
19 |
3 11 1
|
uc1pcl |
|
20 |
19
|
adantl |
|
21 |
11 4
|
ringcl |
|
22 |
9 18 20 21
|
syl3anc |
|
23 |
|
simpl |
|
24 |
|
eqid |
|
25 |
24 14
|
unitrrg |
|
26 |
25
|
adantr |
|
27 |
14 7
|
unitinvcl |
|
28 |
15 27
|
sylan2 |
|
29 |
26 28
|
sseldd |
|
30 |
6 3 24 11 4 5
|
deg1mul3 |
|
31 |
23 29 20 30
|
syl3anc |
|
32 |
6 1
|
uc1pdeg |
|
33 |
31 32
|
eqeltrd |
|
34 |
|
eqid |
|
35 |
6 3 34 11
|
deg1nn0clb |
|
36 |
22 35
|
syldan |
|
37 |
33 36
|
mpbird |
|
38 |
31
|
fveq2d |
|
39 |
|
eqid |
|
40 |
3 11 10 5 4 39
|
coe1sclmul |
|
41 |
23 17 20 40
|
syl3anc |
|
42 |
41
|
fveq1d |
|
43 |
|
nn0ex |
|
44 |
43
|
a1i |
|
45 |
|
fvexd |
|
46 |
|
eqid |
|
47 |
46 11 3 10
|
coe1f |
|
48 |
|
ffn |
|
49 |
20 47 48
|
3syl |
|
50 |
|
eqidd |
|
51 |
44 45 49 50
|
ofc1 |
|
52 |
32 51
|
mpdan |
|
53 |
|
eqid |
|
54 |
14 7 39 53
|
unitlinv |
|
55 |
15 54
|
sylan2 |
|
56 |
52 55
|
eqtrd |
|
57 |
38 42 56
|
3eqtrd |
|
58 |
3 11 34 6 2 53
|
ismon1p |
|
59 |
22 37 57 58
|
syl3anbrc |
|