Metamath Proof Explorer


Theorem ucnimalem

Description: Reformulate the G function as a mapping with one variable. (Contributed by Thierry Arnoux, 19-Nov-2017)

Ref Expression
Hypotheses ucnprima.1 φ U UnifOn X
ucnprima.2 φ V UnifOn Y
ucnprima.3 φ F U uCn V
ucnprima.4 φ W V
ucnprima.5 G = x X , y X F x F y
Assertion ucnimalem G = p X × X F 1 st p F 2 nd p

Proof

Step Hyp Ref Expression
1 ucnprima.1 φ U UnifOn X
2 ucnprima.2 φ V UnifOn Y
3 ucnprima.3 φ F U uCn V
4 ucnprima.4 φ W V
5 ucnprima.5 G = x X , y X F x F y
6 vex x V
7 vex y V
8 6 7 op1std p = x y 1 st p = x
9 8 fveq2d p = x y F 1 st p = F x
10 6 7 op2ndd p = x y 2 nd p = y
11 10 fveq2d p = x y F 2 nd p = F y
12 9 11 opeq12d p = x y F 1 st p F 2 nd p = F x F y
13 12 mpompt p X × X F 1 st p F 2 nd p = x X , y X F x F y
14 5 13 eqtr4i G = p X × X F 1 st p F 2 nd p