Metamath Proof Explorer


Theorem ucnprima

Description: The preimage by a uniformly continuous function F of an entourage W of Y is an entourage of X . Note of the definition 1 of BourbakiTop1 p. II.6. (Contributed by Thierry Arnoux, 19-Nov-2017)

Ref Expression
Hypotheses ucnprima.1 φ U UnifOn X
ucnprima.2 φ V UnifOn Y
ucnprima.3 φ F U uCn V
ucnprima.4 φ W V
ucnprima.5 G = x X , y X F x F y
Assertion ucnprima φ G -1 W U

Proof

Step Hyp Ref Expression
1 ucnprima.1 φ U UnifOn X
2 ucnprima.2 φ V UnifOn Y
3 ucnprima.3 φ F U uCn V
4 ucnprima.4 φ W V
5 ucnprima.5 G = x X , y X F x F y
6 1 2 3 4 5 ucnima φ r U G r W
7 5 mpofun Fun G
8 ustssxp U UnifOn X r U r X × X
9 1 8 sylan φ r U r X × X
10 opex F x F y V
11 5 10 dmmpo dom G = X × X
12 9 11 sseqtrrdi φ r U r dom G
13 funimass3 Fun G r dom G G r W r G -1 W
14 7 12 13 sylancr φ r U G r W r G -1 W
15 14 rexbidva φ r U G r W r U r G -1 W
16 6 15 mpbid φ r U r G -1 W
17 1 adantr φ r U U UnifOn X
18 simpr φ r U r U
19 cnvimass G -1 W dom G
20 19 11 sseqtri G -1 W X × X
21 20 a1i φ r U G -1 W X × X
22 ustssel U UnifOn X r U G -1 W X × X r G -1 W G -1 W U
23 17 18 21 22 syl3anc φ r U r G -1 W G -1 W U
24 23 rexlimdva φ r U r G -1 W G -1 W U
25 16 24 mpd φ G -1 W U