Metamath Proof Explorer


Theorem ufdcringd

Description: A unique factorization domain is a commutative ring. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Hypothesis ufdcringd.1 No typesetting found for |- ( ph -> R e. UFD ) with typecode |-
Assertion ufdcringd φ R CRing

Proof

Step Hyp Ref Expression
1 ufdcringd.1 Could not format ( ph -> R e. UFD ) : No typesetting found for |- ( ph -> R e. UFD ) with typecode |-
2 eqid AbsVal R = AbsVal R
3 eqid Could not format ( PrmIdeal ` R ) = ( PrmIdeal ` R ) : No typesetting found for |- ( PrmIdeal ` R ) = ( PrmIdeal ` R ) with typecode |-
4 eqid RPrime R = RPrime R
5 eqid 0 R = 0 R
6 2 3 4 5 isufd Could not format ( R e. UFD <-> ( R e. CRing /\ ( ( AbsVal ` R ) =/= (/) /\ A. i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ( i i^i ( RPrime ` R ) ) =/= (/) ) ) ) : No typesetting found for |- ( R e. UFD <-> ( R e. CRing /\ ( ( AbsVal ` R ) =/= (/) /\ A. i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ( i i^i ( RPrime ` R ) ) =/= (/) ) ) ) with typecode |-
7 1 6 sylib Could not format ( ph -> ( R e. CRing /\ ( ( AbsVal ` R ) =/= (/) /\ A. i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ( i i^i ( RPrime ` R ) ) =/= (/) ) ) ) : No typesetting found for |- ( ph -> ( R e. CRing /\ ( ( AbsVal ` R ) =/= (/) /\ A. i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ( i i^i ( RPrime ` R ) ) =/= (/) ) ) ) with typecode |-
8 7 simpld φ R CRing