Metamath Proof Explorer


Theorem uffclsflim

Description: The cluster points of an ultrafilter are its limit points. (Contributed by Jeff Hankins, 11-Dec-2009) (Revised by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion uffclsflim F UFil X J fClus F = J fLim F

Proof

Step Hyp Ref Expression
1 ufilfil F UFil X F Fil X
2 fclsfnflim F Fil X x J fClus F f Fil X F f x J fLim f
3 1 2 syl F UFil X x J fClus F f Fil X F f x J fLim f
4 3 biimpa F UFil X x J fClus F f Fil X F f x J fLim f
5 simprrr F UFil X x J fClus F f Fil X F f x J fLim f x J fLim f
6 simpll F UFil X x J fClus F f Fil X F f x J fLim f F UFil X
7 simprl F UFil X x J fClus F f Fil X F f x J fLim f f Fil X
8 simprrl F UFil X x J fClus F f Fil X F f x J fLim f F f
9 ufilmax F UFil X f Fil X F f F = f
10 6 7 8 9 syl3anc F UFil X x J fClus F f Fil X F f x J fLim f F = f
11 10 oveq2d F UFil X x J fClus F f Fil X F f x J fLim f J fLim F = J fLim f
12 5 11 eleqtrrd F UFil X x J fClus F f Fil X F f x J fLim f x J fLim F
13 4 12 rexlimddv F UFil X x J fClus F x J fLim F
14 13 ex F UFil X x J fClus F x J fLim F
15 14 ssrdv F UFil X J fClus F J fLim F
16 flimfcls J fLim F J fClus F
17 16 a1i F UFil X J fLim F J fClus F
18 15 17 eqssd F UFil X J fClus F = J fLim F