Metamath Proof Explorer


Theorem uffinfix

Description: An ultrafilter containing a finite element is fixed. (Contributed by Jeff Hankins, 5-Dec-2009) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion uffinfix F UFil X S F S Fin x X F = y 𝒫 X | x y

Proof

Step Hyp Ref Expression
1 ufilfil F UFil X F Fil X
2 filfinnfr F Fil X S F S Fin F
3 1 2 syl3an1 F UFil X S F S Fin F
4 uffix2 F UFil X F x X F = y 𝒫 X | x y
5 4 3ad2ant1 F UFil X S F S Fin F x X F = y 𝒫 X | x y
6 3 5 mpbid F UFil X S F S Fin x X F = y 𝒫 X | x y