Metamath Proof Explorer


Theorem uffix2

Description: A classification of fixed ultrafilters. (Contributed by Mario Carneiro, 24-May-2015) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion uffix2 F UFil X F x X F = y 𝒫 X | x y

Proof

Step Hyp Ref Expression
1 ufilfil F UFil X F Fil X
2 filn0 F Fil X F
3 intssuni F F F
4 1 2 3 3syl F UFil X F F
5 filunibas F Fil X F = X
6 1 5 syl F UFil X F = X
7 4 6 sseqtrd F UFil X F X
8 7 sseld F UFil X x F x X
9 8 pm4.71rd F UFil X x F x X x F
10 uffixfr F UFil X x F F = y 𝒫 X | x y
11 10 anbi2d F UFil X x X x F x X F = y 𝒫 X | x y
12 9 11 bitrd F UFil X x F x X F = y 𝒫 X | x y
13 12 exbidv F UFil X x x F x x X F = y 𝒫 X | x y
14 n0 F x x F
15 df-rex x X F = y 𝒫 X | x y x x X F = y 𝒫 X | x y
16 13 14 15 3bitr4g F UFil X F x X F = y 𝒫 X | x y