Metamath Proof Explorer


Theorem uffixfr

Description: An ultrafilter is either fixed or free. A fixed ultrafilter is called principal (generated by a single element A ), and a free ultrafilter is called nonprincipal (having empty intersection). Note that examples of free ultrafilters cannot be defined in ZFC without some form of global choice. (Contributed by Jeff Hankins, 4-Dec-2009) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion uffixfr FUFilXAFF=x𝒫X|Ax

Proof

Step Hyp Ref Expression
1 simpl FUFilXAFFUFilX
2 ufilfil FUFilXFFilX
3 filtop FFilXXF
4 2 3 syl FUFilXXF
5 filn0 FFilXF
6 intssuni FFF
7 2 5 6 3syl FUFilXFF
8 filunibas FFilXF=X
9 2 8 syl FUFilXF=X
10 7 9 sseqtrd FUFilXFX
11 10 sselda FUFilXAFAX
12 uffix XFAXAfBasXx𝒫X|Ax=XfilGenA
13 4 11 12 syl2an2r FUFilXAFAfBasXx𝒫X|Ax=XfilGenA
14 13 simprd FUFilXAFx𝒫X|Ax=XfilGenA
15 13 simpld FUFilXAFAfBasX
16 fgcl AfBasXXfilGenAFilX
17 15 16 syl FUFilXAFXfilGenAFilX
18 14 17 eqeltrd FUFilXAFx𝒫X|AxFilX
19 2 adantr FUFilXAFFFilX
20 filsspw FFilXF𝒫X
21 19 20 syl FUFilXAFF𝒫X
22 elintg AFAFxFAx
23 22 ibi AFxFAx
24 23 adantl FUFilXAFxFAx
25 ssrab Fx𝒫X|AxF𝒫XxFAx
26 21 24 25 sylanbrc FUFilXAFFx𝒫X|Ax
27 ufilmax FUFilXx𝒫X|AxFilXFx𝒫X|AxF=x𝒫X|Ax
28 1 18 26 27 syl3anc FUFilXAFF=x𝒫X|Ax
29 eqimss F=x𝒫X|AxFx𝒫X|Ax
30 29 adantl FUFilXF=x𝒫X|AxFx𝒫X|Ax
31 25 simprbi Fx𝒫X|AxxFAx
32 30 31 syl FUFilXF=x𝒫X|AxxFAx
33 eleq2 F=x𝒫X|AxXFXx𝒫X|Ax
34 33 biimpac XFF=x𝒫X|AxXx𝒫X|Ax
35 4 34 sylan FUFilXF=x𝒫X|AxXx𝒫X|Ax
36 eleq2 x=XAxAX
37 36 elrab Xx𝒫X|AxX𝒫XAX
38 37 simprbi Xx𝒫X|AxAX
39 elintg AXAFxFAx
40 35 38 39 3syl FUFilXF=x𝒫X|AxAFxFAx
41 32 40 mpbird FUFilXF=x𝒫X|AxAF
42 28 41 impbida FUFilXAFF=x𝒫X|Ax