Metamath Proof Explorer


Theorem uffixfr

Description: An ultrafilter is either fixed or free. A fixed ultrafilter is called principal (generated by a single element A ), and a free ultrafilter is called nonprincipal (having empty intersection). Note that examples of free ultrafilters cannot be defined in ZFC without some form of global choice. (Contributed by Jeff Hankins, 4-Dec-2009) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion uffixfr F UFil X A F F = x 𝒫 X | A x

Proof

Step Hyp Ref Expression
1 simpl F UFil X A F F UFil X
2 ufilfil F UFil X F Fil X
3 filtop F Fil X X F
4 2 3 syl F UFil X X F
5 filn0 F Fil X F
6 intssuni F F F
7 2 5 6 3syl F UFil X F F
8 filunibas F Fil X F = X
9 2 8 syl F UFil X F = X
10 7 9 sseqtrd F UFil X F X
11 10 sselda F UFil X A F A X
12 uffix X F A X A fBas X x 𝒫 X | A x = X filGen A
13 4 11 12 syl2an2r F UFil X A F A fBas X x 𝒫 X | A x = X filGen A
14 13 simprd F UFil X A F x 𝒫 X | A x = X filGen A
15 13 simpld F UFil X A F A fBas X
16 fgcl A fBas X X filGen A Fil X
17 15 16 syl F UFil X A F X filGen A Fil X
18 14 17 eqeltrd F UFil X A F x 𝒫 X | A x Fil X
19 2 adantr F UFil X A F F Fil X
20 filsspw F Fil X F 𝒫 X
21 19 20 syl F UFil X A F F 𝒫 X
22 elintg A F A F x F A x
23 22 ibi A F x F A x
24 23 adantl F UFil X A F x F A x
25 ssrab F x 𝒫 X | A x F 𝒫 X x F A x
26 21 24 25 sylanbrc F UFil X A F F x 𝒫 X | A x
27 ufilmax F UFil X x 𝒫 X | A x Fil X F x 𝒫 X | A x F = x 𝒫 X | A x
28 1 18 26 27 syl3anc F UFil X A F F = x 𝒫 X | A x
29 eqimss F = x 𝒫 X | A x F x 𝒫 X | A x
30 29 adantl F UFil X F = x 𝒫 X | A x F x 𝒫 X | A x
31 25 simprbi F x 𝒫 X | A x x F A x
32 30 31 syl F UFil X F = x 𝒫 X | A x x F A x
33 eleq2 F = x 𝒫 X | A x X F X x 𝒫 X | A x
34 33 biimpac X F F = x 𝒫 X | A x X x 𝒫 X | A x
35 4 34 sylan F UFil X F = x 𝒫 X | A x X x 𝒫 X | A x
36 eleq2 x = X A x A X
37 36 elrab X x 𝒫 X | A x X 𝒫 X A X
38 37 simprbi X x 𝒫 X | A x A X
39 elintg A X A F x F A x
40 35 38 39 3syl F UFil X F = x 𝒫 X | A x A F x F A x
41 32 40 mpbird F UFil X F = x 𝒫 X | A x A F
42 28 41 impbida F UFil X A F F = x 𝒫 X | A x