Metamath Proof Explorer


Theorem uffixsn

Description: The singleton of the generator of a fixed ultrafilter is in the filter. (Contributed by Mario Carneiro, 24-May-2015) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion uffixsn F UFil X A F A F

Proof

Step Hyp Ref Expression
1 eleq2 x = A A x A A
2 ufilfil F UFil X F Fil X
3 filn0 F Fil X F
4 intssuni F F F
5 2 3 4 3syl F UFil X F F
6 filunibas F Fil X F = X
7 2 6 syl F UFil X F = X
8 5 7 sseqtrd F UFil X F X
9 8 sselda F UFil X A F A X
10 9 snssd F UFil X A F A X
11 snex A V
12 11 elpw A 𝒫 X A X
13 10 12 sylibr F UFil X A F A 𝒫 X
14 snidg A F A A
15 14 adantl F UFil X A F A A
16 1 13 15 elrabd F UFil X A F A x 𝒫 X | A x
17 uffixfr F UFil X A F F = x 𝒫 X | A x
18 17 biimpa F UFil X A F F = x 𝒫 X | A x
19 16 18 eleqtrrd F UFil X A F A F