Metamath Proof Explorer


Theorem ufilb

Description: The complement is in an ultrafilter iff the set is not. (Contributed by Mario Carneiro, 11-Dec-2013) (Revised by Mario Carneiro, 29-Jul-2015)

Ref Expression
Assertion ufilb F UFil X S X ¬ S F X S F

Proof

Step Hyp Ref Expression
1 ufilss F UFil X S X S F X S F
2 1 ord F UFil X S X ¬ S F X S F
3 ufilfil F UFil X F Fil X
4 filfbas F Fil X F fBas X
5 fbncp F fBas X S F ¬ X S F
6 5 ex F fBas X S F ¬ X S F
7 6 con2d F fBas X X S F ¬ S F
8 3 4 7 3syl F UFil X X S F ¬ S F
9 8 adantr F UFil X S X X S F ¬ S F
10 2 9 impbid F UFil X S X ¬ S F X S F