Metamath Proof Explorer


Theorem ufilcmp

Description: A space is compact iff every ultrafilter converges. (Contributed by Jeff Hankins, 11-Dec-2009) (Proof shortened by Mario Carneiro, 12-Apr-2015) (Revised by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion ufilcmp X UFL J TopOn X J Comp f UFil X J fLim f

Proof

Step Hyp Ref Expression
1 ufilfil f UFil J f Fil J
2 eqid J = J
3 2 fclscmpi J Comp f Fil J J fClus f
4 1 3 sylan2 J Comp f UFil J J fClus f
5 4 ralrimiva J Comp f UFil J J fClus f
6 toponuni J TopOn X X = J
7 6 fveq2d J TopOn X UFil X = UFil J
8 7 raleqdv J TopOn X f UFil X J fClus f f UFil J J fClus f
9 8 adantl X UFL J TopOn X f UFil X J fClus f f UFil J J fClus f
10 5 9 syl5ibr X UFL J TopOn X J Comp f UFil X J fClus f
11 ufli X UFL g Fil X f UFil X g f
12 11 adantlr X UFL J TopOn X g Fil X f UFil X g f
13 r19.29 f UFil X J fClus f f UFil X g f f UFil X J fClus f g f
14 simpllr X UFL J TopOn X g Fil X f UFil X g f J TopOn X
15 simplr X UFL J TopOn X g Fil X f UFil X g f g Fil X
16 simprr X UFL J TopOn X g Fil X f UFil X g f g f
17 fclsss2 J TopOn X g Fil X g f J fClus f J fClus g
18 14 15 16 17 syl3anc X UFL J TopOn X g Fil X f UFil X g f J fClus f J fClus g
19 ssn0 J fClus f J fClus g J fClus f J fClus g
20 19 ex J fClus f J fClus g J fClus f J fClus g
21 18 20 syl X UFL J TopOn X g Fil X f UFil X g f J fClus f J fClus g
22 21 expr X UFL J TopOn X g Fil X f UFil X g f J fClus f J fClus g
23 22 impcomd X UFL J TopOn X g Fil X f UFil X J fClus f g f J fClus g
24 23 rexlimdva X UFL J TopOn X g Fil X f UFil X J fClus f g f J fClus g
25 13 24 syl5 X UFL J TopOn X g Fil X f UFil X J fClus f f UFil X g f J fClus g
26 12 25 mpan2d X UFL J TopOn X g Fil X f UFil X J fClus f J fClus g
27 26 ralrimdva X UFL J TopOn X f UFil X J fClus f g Fil X J fClus g
28 fclscmp J TopOn X J Comp g Fil X J fClus g
29 28 adantl X UFL J TopOn X J Comp g Fil X J fClus g
30 27 29 sylibrd X UFL J TopOn X f UFil X J fClus f J Comp
31 10 30 impbid X UFL J TopOn X J Comp f UFil X J fClus f
32 uffclsflim f UFil X J fClus f = J fLim f
33 32 neeq1d f UFil X J fClus f J fLim f
34 33 ralbiia f UFil X J fClus f f UFil X J fLim f
35 31 34 bitrdi X UFL J TopOn X J Comp f UFil X J fLim f