Metamath Proof Explorer


Theorem ufildom1

Description: An ultrafilter is generated by at most one element (because free ultrafilters have no generators and fixed ultrafilters have exactly one). (Contributed by Mario Carneiro, 24-May-2015) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion ufildom1 F UFil X F 1 𝑜

Proof

Step Hyp Ref Expression
1 breq1 F = F 1 𝑜 1 𝑜
2 uffixsn F UFil X x F x F
3 intss1 x F F x
4 2 3 syl F UFil X x F F x
5 simpr F UFil X x F x F
6 5 snssd F UFil X x F x F
7 4 6 eqssd F UFil X x F F = x
8 7 ex F UFil X x F F = x
9 8 eximdv F UFil X x x F x F = x
10 n0 F x x F
11 en1 F 1 𝑜 x F = x
12 9 10 11 3imtr4g F UFil X F F 1 𝑜
13 12 imp F UFil X F F 1 𝑜
14 endom F 1 𝑜 F 1 𝑜
15 13 14 syl F UFil X F F 1 𝑜
16 1on 1 𝑜 On
17 0domg 1 𝑜 On 1 𝑜
18 16 17 mp1i F UFil X 1 𝑜
19 1 15 18 pm2.61ne F UFil X F 1 𝑜