Step |
Hyp |
Ref |
Expression |
1 |
|
ufildr.1 |
|
2 |
|
elssuni |
|
3 |
|
ufilfil |
|
4 |
|
filunibas |
|
5 |
3 4
|
syl |
|
6 |
1
|
unieqi |
|
7 |
|
uniun |
|
8 |
|
0ex |
|
9 |
8
|
unisn |
|
10 |
9
|
uneq2i |
|
11 |
|
un0 |
|
12 |
7 10 11
|
3eqtri |
|
13 |
6 12
|
eqtr2i |
|
14 |
5 13
|
eqtr3di |
|
15 |
14
|
sseq2d |
|
16 |
2 15
|
syl5ibr |
|
17 |
|
eqid |
|
18 |
17
|
cldss |
|
19 |
18 15
|
syl5ibr |
|
20 |
16 19
|
jaod |
|
21 |
|
ufilss |
|
22 |
|
ssun1 |
|
23 |
22 1
|
sseqtrri |
|
24 |
23
|
a1i |
|
25 |
24
|
sseld |
|
26 |
24
|
sseld |
|
27 |
|
filconn |
|
28 |
|
conntop |
|
29 |
3 27 28
|
3syl |
|
30 |
1 29
|
eqeltrid |
|
31 |
15
|
biimpa |
|
32 |
17
|
iscld2 |
|
33 |
30 31 32
|
syl2an2r |
|
34 |
14
|
difeq1d |
|
35 |
34
|
eleq1d |
|
36 |
35
|
adantr |
|
37 |
33 36
|
bitr4d |
|
38 |
26 37
|
sylibrd |
|
39 |
25 38
|
orim12d |
|
40 |
21 39
|
mpd |
|
41 |
40
|
ex |
|
42 |
20 41
|
impbid |
|
43 |
|
elun |
|
44 |
|
velpw |
|
45 |
42 43 44
|
3bitr4g |
|
46 |
45
|
eqrdv |
|