| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ufildr.1 |
|
| 2 |
|
elssuni |
|
| 3 |
|
ufilfil |
|
| 4 |
|
filunibas |
|
| 5 |
3 4
|
syl |
|
| 6 |
1
|
unieqi |
|
| 7 |
|
uniun |
|
| 8 |
|
0ex |
|
| 9 |
8
|
unisn |
|
| 10 |
9
|
uneq2i |
|
| 11 |
|
un0 |
|
| 12 |
7 10 11
|
3eqtri |
|
| 13 |
6 12
|
eqtr2i |
|
| 14 |
5 13
|
eqtr3di |
|
| 15 |
14
|
sseq2d |
|
| 16 |
2 15
|
imbitrrid |
|
| 17 |
|
eqid |
|
| 18 |
17
|
cldss |
|
| 19 |
18 15
|
imbitrrid |
|
| 20 |
16 19
|
jaod |
|
| 21 |
|
ufilss |
|
| 22 |
|
ssun1 |
|
| 23 |
22 1
|
sseqtrri |
|
| 24 |
23
|
a1i |
|
| 25 |
24
|
sseld |
|
| 26 |
24
|
sseld |
|
| 27 |
|
filconn |
|
| 28 |
|
conntop |
|
| 29 |
3 27 28
|
3syl |
|
| 30 |
1 29
|
eqeltrid |
|
| 31 |
15
|
biimpa |
|
| 32 |
17
|
iscld2 |
|
| 33 |
30 31 32
|
syl2an2r |
|
| 34 |
14
|
difeq1d |
|
| 35 |
34
|
eleq1d |
|
| 36 |
35
|
adantr |
|
| 37 |
33 36
|
bitr4d |
|
| 38 |
26 37
|
sylibrd |
|
| 39 |
25 38
|
orim12d |
|
| 40 |
21 39
|
mpd |
|
| 41 |
40
|
ex |
|
| 42 |
20 41
|
impbid |
|
| 43 |
|
elun |
|
| 44 |
|
velpw |
|
| 45 |
42 43 44
|
3bitr4g |
|
| 46 |
45
|
eqrdv |
|