Metamath Proof Explorer


Theorem ufilen

Description: Any infinite set has an ultrafilter on it whose elements are of the same cardinality as the set. Any such ultrafilter is necessarily free. (Contributed by Jeff Hankins, 7-Dec-2009) (Revised by Stefan O'Rear, 3-Aug-2015)

Ref Expression
Assertion ufilen ω X f UFil X x f x X

Proof

Step Hyp Ref Expression
1 reldom Rel
2 1 brrelex2i ω X X V
3 numth3 X V X dom card
4 2 3 syl ω X X dom card
5 csdfil X dom card ω X y 𝒫 X | X y X Fil X
6 4 5 mpancom ω X y 𝒫 X | X y X Fil X
7 filssufil y 𝒫 X | X y X Fil X f UFil X y 𝒫 X | X y X f
8 6 7 syl ω X f UFil X y 𝒫 X | X y X f
9 elfvex f UFil X X V
10 9 ad2antlr ω X f UFil X x f X V
11 ufilfil f UFil X f Fil X
12 filelss f Fil X x f x X
13 11 12 sylan f UFil X x f x X
14 13 adantll ω X f UFil X x f x X
15 ssdomg X V x X x X
16 10 14 15 sylc ω X f UFil X x f x X
17 filfbas f Fil X f fBas X
18 11 17 syl f UFil X f fBas X
19 18 adantl ω X f UFil X f fBas X
20 fbncp f fBas X x f ¬ X x f
21 19 20 sylan ω X f UFil X x f ¬ X x f
22 difeq2 y = X x X y = X X x
23 22 breq1d y = X x X y X X X x X
24 difss X x X
25 elpw2g X V X x 𝒫 X X x X
26 24 25 mpbiri X V X x 𝒫 X
27 26 3ad2ant1 X V x X x X X x 𝒫 X
28 simp2 X V x X x X x X
29 dfss4 x X X X x = x
30 28 29 sylib X V x X x X X X x = x
31 simp3 X V x X x X x X
32 30 31 eqbrtrd X V x X x X X X x X
33 23 27 32 elrabd X V x X x X X x y 𝒫 X | X y X
34 ssel y 𝒫 X | X y X f X x y 𝒫 X | X y X X x f
35 33 34 syl5com X V x X x X y 𝒫 X | X y X f X x f
36 35 3expa X V x X x X y 𝒫 X | X y X f X x f
37 36 impancom X V x X y 𝒫 X | X y X f x X X x f
38 37 con3d X V x X y 𝒫 X | X y X f ¬ X x f ¬ x X
39 38 impancom X V x X ¬ X x f y 𝒫 X | X y X f ¬ x X
40 10 14 21 39 syl21anc ω X f UFil X x f y 𝒫 X | X y X f ¬ x X
41 bren2 x X x X ¬ x X
42 41 simplbi2 x X ¬ x X x X
43 16 40 42 sylsyld ω X f UFil X x f y 𝒫 X | X y X f x X
44 43 ralrimdva ω X f UFil X y 𝒫 X | X y X f x f x X
45 44 reximdva ω X f UFil X y 𝒫 X | X y X f f UFil X x f x X
46 8 45 mpd ω X f UFil X x f x X