Metamath Proof Explorer


Theorem ufilss

Description: For any subset of the base set of an ultrafilter, either the set is in the ultrafilter or the complement is. (Contributed by Jeff Hankins, 1-Dec-2009) (Revised by Mario Carneiro, 29-Jul-2015)

Ref Expression
Assertion ufilss F UFil X S X S F X S F

Proof

Step Hyp Ref Expression
1 elfvdm F UFil X X dom UFil
2 elpw2g X dom UFil S 𝒫 X S X
3 1 2 syl F UFil X S 𝒫 X S X
4 isufil F UFil X F Fil X x 𝒫 X x F X x F
5 eleq1 x = S x F S F
6 difeq2 x = S X x = X S
7 6 eleq1d x = S X x F X S F
8 5 7 orbi12d x = S x F X x F S F X S F
9 8 rspccv x 𝒫 X x F X x F S 𝒫 X S F X S F
10 4 9 simplbiim F UFil X S 𝒫 X S F X S F
11 3 10 sylbird F UFil X S X S F X S F
12 11 imp F UFil X S X S F X S F